
Operating Systems

Semaphores, Condition Variables,
and Monitors

Lecture 6
Michael O’Boyle

1

Semaphore

• More sophisticated Synchronization mechanism
• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition
wait(S) {

while (S <= 0)
; // busy wait

S--;
}

• Definition
signal(S) {

S++;
}

Do these operations atomically

Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted
domain

• Binary semaphore – integer value can range only between 0 and 1
– Same as a lock

• Can solve various synchronization problems
• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0
P1:

S1;
signal(synch);

P2:
wait(synch);
S2;

• Can implement a counting semaphore S as a binary semaphore

Implementation with no Busy waiting
Each semaphore has an associated queue of threads

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this thread to S->list;
block();

}
}
signal(semaphore *S) {

S->value++;
if (S->value <= 0) {

remove a thread T from S->list;
wakeup(T);

}
}

Binary semaphore usage

• From the programmer’s perspective, P and V on a binary semaphore
are just like Acquire and Release on a lock

P(sem)...
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code...

V(sem)

– same lack of programming language support for correct usage

• Important differences in the underlying implementation, however
• No busy waiting

5

Example: Bounded buffer problem

• AKA “producer/consumer” problem
– there is a circular buffer in memory with N entries (slots)
– producer threads insert entries into it (one at a time)
– consumer threads remove entries from it (one at a time)

• Threads are concurrent
– so, we must use synchronization constructs to control access to

shared variables describing buffer state

6

headtail

Bounded buffer using semaphores
(both binary and counting)

7

var mutex: semaphore = 1 ; mutual exclusion to shared data
empty: semaphore = n ; count of empty slots (all empty to start)
full: semaphore = 0 ; count of full slots (none full to start)

producer:
P(empty) ; block if no slots available
P(mutex) ; get access to pointers

<add item to slot, adjust pointers>
V(mutex) ; done with pointers
V(full) ; note one more full slot

consumer:
P(full) ; wait until there’s a full slot
P(mutex) ; get access to pointers

<remove item from slot, adjust pointers>
V(mutex) ; done with pointers
V(empty) ; note there’s an empty slot

<use the item>

Example: Readers/Writers

• Description:
– A single object is shared among several threads/processes
– Sometimes a thread just reads the object
– Sometimes a thread updates (writes) the object

– We can allow multiple readers at a time
• Do not change state – no race condition

– We can only allow one writer at a time
• Change state- race condition

8

Readers/Writers using semaphores

9

var mutex: semaphore = 1 ; controls access to readcount
wrt: semaphore = 1 ; control entry for a writer or first reader
readcount: integer = 0 ; number of active readers

writer:
P(wrt) ; any writers or readers?

<perform write operation>
V(wrt) ; allow others

reader:
P(mutex) ; ensure exclusion

readcount++ ; one more reader
if readcount == 1 then P(wrt) ; if we’re the first, synch with writers

V(mutex)
<perform read operation>

P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt) ; no more readers, allow a writer

V(mutex)

Readers/Writers notes

• Notes:
– the first reader blocks on P(wrt) if there is a writer

• any other readers will then block on P(mutex)

– if a waiting writer exists, the last reader to exit signals the waiting
writer

• Can new readers get in while a writer is waiting?

– When writer exits, if there is both a reader and writer waiting, which
one goes next?

10

Semaphores vs. Spinlocks

• Threads that are blocked at the level of program logic (that is, by the
semaphore P operation) are placed on queues, rather than busy-waiting

• Busy-waiting may be used for the “real” mutual exclusion required to
implement P and V
– but these are very short critical sections – totally independent of program

logic
– and they are not implemented by the application programmer

11

Abstract implementation

– P/wait(sem)
• acquire “real” mutual exclusion

– if sem is “available” (>0), decrement sem; release “real”
mutual exclusion; let thread continue

– otherwise, place thread on associated queue; release “real”
mutual exclusion; run some other thread

– V/signal(sem)
• acquire “real” mutual exclusion

– if thread(s) are waiting on the associated queue, unblock
one (place it on the ready queue)

– if no threads are on the queue, sem is incremented
» the signal is “remembered” for next time P(sem) is called

• release “real” mutual exclusion
• the “V-ing” thread continues execution

12

Another approach: Condition Variables

• Basic operations
– Wait()

• Wait until some thread signal and release the associated lock, as
an atomic operation

– Signal()
• If any threads are waiting, wake up one
• Cannot proceed until lock re-acquired

• Signal() is not remembered
– Signal to a condition variable that has no threads waiting is a no-op

• Qualitative use guideline
– You wait() when you can’t proceed until some shared state changes
– You signal() when shared state changes from “bad” to “good”

13

Bounded buffers with condition variables

14

var mutex: lock ; mutual exclusion to shared data
freeslot: condition ; there’s a free slot
fullslot: condition ; there’s a full slot

producer:
lock(mutex) ; get access to pointers
if [no slots available] wait(freeslot);

<add item to slot, adjust pointers>
signal(fullslot);
unlock(mutex)

consumer:
lock(mutex) ; get access to pointers
if [no slots have data] wait(fullslot);

<remove item from slot, adjust pointers>
signal(freeslot);
unlock(mutex);
<use the item>

The possible bug

• Depending on the implementation …
– Between the time a thread is woken up by signal() and the time it re-

acquires the lock, the condition it is waiting for may be false again
• Waiting for a thread to put something in the buffer
• A thread does, and signals
• Now another thread comes along and consumes it
• Then the “signalled” thread forges ahead …

• Solution
• Not

– if [no slots have data] wait(fullslot)
• Instead

– While [no slots have data] wait(fullslot)

15

The possible bug

16

Waiting
consumer T1

Another
consumer T2

Producer
T3

Waiting signal
Unlock mutex

Reacquire
mutex

Wake up

Lock the mutex
Consume
an item

Unlock the mutex

Try to consume
an item

(but already
consumed by T2)

Insert
an item

Arrives at the
critical section

mutex is free

Y-axis is time

Unlock the
mutex

Problems with semaphores, locks, and
condition variables

• They can be used to solve any of the traditional synchronization
problems, but it’s easy to make mistakes
– they are essentially shared global variables

• can be accessed from anywhere (bad software engineering)
– there is no connection between the synchronization variable and the data

being controlled by it
– No control over their use, no guarantee of proper usage

• Condition variables: will there ever be a signal?
• Semaphores: will there ever be a V()?
• Locks: did you lock when necessary? Unlock at the right time? At all?

• Thus, they are prone to bugs
– We can reduce the chance of bugs by “stylizing” the use of synchronization
– Language help is useful for this

17

One More Approach: Monitors

• A programming language construct supports controlled shared data
access
– synchronization code is added by the compiler

• A class in which every method automatically acquires a lock on entry,
and releases it on exit – it combines:
– shared data structures (object)
– procedures that operate on the shared data (object metnods)
– synchronization between concurrent threads that invoke those procedures

• Data can only be accessed from within the
– protects the data from unstructured access
– Prevents ambiguity about what the synchronization variable protects

• Addresses the key usability issues that arise with semaphores

18

A monitor

19

shared data

waiting queue of threads
trying to enter the monitor

operations (methods)at most one thread
in monitor at a

time

Proc A

Proc B

Proc C

Monitor facilities

• “Automatic” mutual exclusion
– only one thread can be executing inside at any time

• thus, synchronization is implicitly associated with the monitor – it
“comes for free”

– if a second thread tries to execute a monitor procedure, it blocks
until the first has left the monitor

• more restrictive than semaphores
• but easier to use (most of the time)

• But, there’s a problem…

20

Problem: Bounded Buffer Scenario

21

Produce()

Consume()

• Buffer is empty
• Now what?

P P C

C

Problem: Bounded Buffer Scenario

22

Produce()

Consume()

• Buffer is full
• Now what?

P P C

P

Solution?

• Monitors require condition variables
• Operations on condition variables (just as before!)

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have associated wait queues

– signal(c)
• wake up at most one waiting thread

– “Hoare” monitor: wakeup immediately, signaller steps
outside

• if no waiting threads, signal is lost
– this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting threads

23

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

produce(resource x) {
if (array “resources” is full, determined maybe by a count)

wait(not_full);
insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty, determined maybe by a count)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}
}

24

Problem: Bounded Buffer Scenario

25

Produce()

Consume()

• Buffer is full
• Now what?

P P C

P

Bounded Buffer Scenario with CV’s

26

Produce()

Consume()

• Buffer is full
• Now what?

P P C

P
Queue of
threads

waiting for
condition “not

full” to be
signaled

Runtime system calls for (Hoare) monitors

• EnterMonitor(m) {guarantee mutual exclusion}
• ExitMonitor(m) {hit the road, letting someone else run}
• Wait(c) {step out until condition satisfied}
• Signal(c) {if someone’s waiting, step out and let him run}

• EnterMonitor and ExitMonitor are inserted automatically by
the compiler.

• This guarantees mutual exclusion for code inside of the
monitor.

27

Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
if (array “resources” is full, determined maybe by a count)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

if (array “resources” is empty, determined maybe by a count)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}
28

EnterMonitor(m)

EnterMonitor(m)

ExitMonitor(m)

ExitMonitor(m)

Monitor Summary

• Language supports monitors
• Compiler understands them

– Compiler inserts calls to runtime routines for
• monitor entry
• monitor exit

– Programmer inserts calls to runtime routines for
• signal
• wait

– Language/object encapsulation ensures correctness
• Sometimes! With conditions, you still need to think about

synchronization
• Runtime system implements these routines

– moves threads on and off queues
– ensures mutual exclusion!

29

