
Operating Systems

Semaphores, Condition Variables, 
and Monitors

Lecture 6
Michael O’Boyle

1



Semaphore

• More sophisticated Synchronization mechanism
• Semaphore S – integer variable
• Can only be accessed via two indivisible (atomic) operations

– wait() and signal()
• Originally called P() and V()

• Definition 
wait(S) { 

while (S <= 0)
; // busy wait

S--;
}

• Definition 
signal(S) { 

S++;
}

Do these operations atomically



Semaphore Usage

• Counting semaphore – integer value can range over an unrestricted 
domain

• Binary semaphore – integer value can range only between 0 and 1
– Same as a lock

• Can solve various synchronization problems
• Consider P1 and P2 that require S1 to happen before S2

Create a semaphore “synch” initialized to 0 
P1:

S1;
signal(synch);

P2:
wait(synch);
S2;

• Can implement a counting semaphore S as a binary semaphore



Implementation with no Busy waiting 
Each semaphore has an associated queue of threads

wait(semaphore *S) { 
S->value--; 
if (S->value < 0) {

add this thread to S->list; 
block(); 

} 
}
signal(semaphore *S) { 

S->value++; 
if (S->value <= 0) {

remove a thread T from S->list; 
wakeup(T); 

} 
} 



Binary semaphore usage

• From the programmer’s perspective, P and V on a binary semaphore 
are just like Acquire and Release on a lock

P(sem)...
do whatever stuff requires mutual exclusion; could conceivably
be a lot of code...

V(sem)

– same lack of programming language support for correct usage

• Important differences in the underlying implementation, however
• No busy waiting
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Example: Bounded buffer problem

• AKA “producer/consumer” problem
– there is a circular buffer in memory with N entries (slots)
– producer threads insert entries into it (one at a time)
– consumer threads remove entries from it (one at a time)

• Threads are concurrent
– so, we must use synchronization constructs to control access to 

shared variables describing buffer state
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Bounded buffer using semaphores
(both binary and counting)
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var mutex: semaphore = 1 ; mutual exclusion to shared data
empty: semaphore = n    ; count of empty slots (all empty to start)
full: semaphore = 0         ; count of full slots (none full to start)

producer:
P(empty) ; block if no slots available
P(mutex) ; get access to pointers

<add item to slot, adjust pointers>
V(mutex) ; done with pointers
V(full)      ; note one more full slot

consumer:
P(full)      ; wait until there’s a full slot
P(mutex) ; get access to pointers

<remove item from slot, adjust pointers>
V(mutex) ; done with pointers
V(empty) ; note there’s an empty slot

<use the item>



Example: Readers/Writers

• Description:
– A single object is shared among several threads/processes
– Sometimes a thread just reads the object
– Sometimes a thread updates (writes) the object

– We can allow multiple readers at a time
• Do not change state – no race condition

– We can only allow one writer at a time
• Change state- race condition
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Readers/Writers using semaphores
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var mutex: semaphore = 1 ; controls access to readcount
wrt: semaphore = 1 ; control entry for a writer or first reader
readcount: integer = 0 ; number of active readers

writer:
P(wrt) ; any writers or readers?

<perform write operation>
V(wrt) ; allow others

reader:
P(mutex) ; ensure exclusion

readcount++ ; one more reader
if readcount == 1 then P(wrt)      ; if we’re the first, synch with writers

V(mutex)
<perform read operation>

P(mutex) ; ensure exclusion
readcount-- ; one fewer reader
if readcount == 0 then V(wrt)       ; no more readers, allow a writer

V(mutex)



Readers/Writers notes

• Notes:
– the first reader blocks on P(wrt) if there is a writer

• any other readers will then block on P(mutex)

– if a waiting writer exists, the last reader to exit signals the waiting 
writer

• Can new readers get in while a writer is waiting?

– When writer exits, if there is both a reader and writer waiting, which 
one goes next?
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Semaphores vs. Spinlocks

• Threads that are blocked at the level of program logic (that is, by the 
semaphore P operation) are placed on queues, rather than busy-waiting

• Busy-waiting may be used for the “real” mutual exclusion required to 
implement P and V
– but these are very short critical sections – totally independent of program 

logic
– and they are not implemented by the application programmer
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Abstract implementation

– P/wait(sem)
• acquire “real” mutual exclusion

– if sem is “available” (>0), decrement sem; release “real” 
mutual exclusion; let thread continue

– otherwise, place thread on associated queue; release “real” 
mutual exclusion; run some other thread

– V/signal(sem)
• acquire “real” mutual exclusion

– if thread(s) are waiting on the associated queue, unblock 
one (place it on the ready queue)

– if no threads are on the queue, sem is incremented
» the signal is “remembered” for next time P(sem) is called

• release “real” mutual exclusion
• the “V-ing” thread continues execution
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Another approach: Condition Variables

• Basic operations
– Wait()

• Wait until some thread signal and release the associated lock, as 
an atomic operation

– Signal()
• If any threads are waiting, wake up one
• Cannot proceed until lock re-acquired

• Signal() is not remembered
– Signal to a condition variable that has no threads waiting is a no-op

• Qualitative use guideline
– You wait() when you can’t proceed until some shared state changes
– You signal() when shared state changes from “bad” to “good”
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Bounded buffers with condition variables

14

var mutex: lock ; mutual exclusion to shared data
freeslot: condition ; there’s a free slot
fullslot: condition ; there’s a full slot

producer:
lock(mutex) ; get access to pointers
if [no slots available] wait(freeslot);

<add item to slot, adjust pointers>
signal(fullslot);
unlock(mutex)

consumer:
lock(mutex) ; get access to pointers
if [no slots have data] wait(fullslot);

<remove item from slot, adjust pointers>
signal(freeslot);
unlock(mutex); 
<use the item>



The possible bug

• Depending on the implementation …
– Between the time a thread is woken up by signal() and the time it re-

acquires the lock, the condition it is waiting for may be false again
• Waiting for a thread to put something in the buffer
• A thread does, and signals
• Now another thread comes along and consumes it
• Then the “signalled” thread forges ahead …

• Solution
• Not

– if [no slots have data] wait(fullslot)
• Instead 

– While [no slots have data] wait(fullslot)
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The possible bug
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Problems with semaphores, locks, and 
condition variables

• They can be used to solve any of the traditional synchronization 
problems, but it’s easy to make mistakes
– they are essentially shared global variables

• can be accessed from anywhere (bad software engineering)
– there is no connection between the synchronization variable and the data 

being controlled by it
– No control over their use, no guarantee of proper usage

• Condition variables:  will there ever be a signal?
• Semaphores:  will there ever be a V()?
• Locks:  did you lock when necessary?  Unlock at the right time?  At all?

• Thus, they are prone to bugs
– We can reduce the chance of bugs by “stylizing” the use of synchronization
– Language help is useful for this
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One More Approach: Monitors

• A programming language construct supports controlled shared data 
access 
– synchronization code is added by the compiler

• A class in which every method automatically acquires a lock on entry, 
and releases it on exit – it combines:
– shared data structures (object)
– procedures that operate on the shared data (object metnods)
– synchronization between concurrent threads that invoke those procedures

• Data can only be accessed from within the 
– protects the data from unstructured access
– Prevents ambiguity about what the synchronization variable protects

• Addresses the key usability issues that arise with semaphores
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A monitor
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Monitor facilities

• “Automatic” mutual exclusion
– only one thread can be executing inside at any time

• thus, synchronization is implicitly associated with the monitor – it 
“comes for free” 

– if a second thread tries to execute a monitor procedure, it blocks 
until the first has left the monitor

• more restrictive than semaphores
• but easier to use (most of the time)

• But, there’s a problem…
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Problem: Bounded Buffer Scenario

21

Produce()

Consume()

• Buffer is empty
• Now what?

P P C

C



Problem: Bounded Buffer Scenario
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Produce()

Consume()

• Buffer is full
• Now what?

P P C

P



Solution?

• Monitors require condition variables
• Operations on condition variables (just as before!)

– wait(c)
• release monitor lock, so somebody else can get in
• wait for somebody else to signal condition
• thus, condition variables have associated wait queues

– signal(c)
• wake up at most one waiting thread

– “Hoare” monitor:  wakeup immediately, signaller steps 
outside

• if no waiting threads, signal is lost
– this is different than semaphores: no history!

– broadcast(c)
• wake up all waiting threads
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Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

produce(resource x) {
if (array “resources” is full, determined maybe by a count)

wait(not_full);
insert “x” in array “resources”
signal(not_empty);

}

consume(resource *x) {
if (array “resources” is empty, determined maybe by a count)

wait(not_empty);
*x = get resource from array “resources”
signal(not_full);

}
}
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Problem: Bounded Buffer Scenario
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Produce()

Consume()

• Buffer is full
• Now what?

P P C

P



Bounded Buffer Scenario with CV’s
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Produce()

Consume()
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Runtime system calls for (Hoare) monitors

• EnterMonitor(m) {guarantee mutual exclusion}
• ExitMonitor(m) {hit the road, letting someone else run}
• Wait(c) {step out until condition satisfied}
• Signal(c) {if someone’s waiting, step out and let him run}

• EnterMonitor and ExitMonitor are inserted automatically by 
the compiler.  

• This guarantees mutual exclusion for code inside of the 
monitor.
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Bounded buffer using (Hoare) monitors

Monitor bounded_buffer {
buffer resources[N];
condition not_full, not_empty;

procedure add_entry(resource x) {
if (array “resources” is full, determined maybe by a count)
wait(not_full);

insert “x” in array “resources”
signal(not_empty);

}
procedure get_entry(resource *x) {

if (array “resources” is empty, determined maybe by a count)
wait(not_empty);

*x = get resource from array “resources”
signal(not_full);

}
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Monitor Summary

• Language supports monitors
• Compiler understands them

– Compiler inserts calls to runtime routines for
• monitor entry
• monitor exit

– Programmer inserts calls to runtime routines for
• signal
• wait

– Language/object encapsulation ensures correctness
• Sometimes!  With conditions, you still need to think about 

synchronization
• Runtime system implements these routines

– moves threads on and off queues
– ensures mutual exclusion!
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