
Operating Systems
Fall 2014

Threads

Myungjin Lee
myungjin.lee@ed.ac.uk

1

What’s “in” a process?

•  A process consists of (at least):
–  An address space, containing

•  the code (instructions) for the running program
•  the data for the running program

–  Thread state, consisting of
•  The program counter (PC), indicating the next instruction
•  The stack pointer register (implying the stack it points to)
•  Other general purpose register values

–  A set of OS resources
•  open files, network connections, sound channels, …

•  That’s a lot of concepts bundled together!
•  Today: decompose …

–  address space
–  thread of control (stack, stack pointer, program counter, registers)
–  OS resources

2

The Big Picture

•  Threads are about concurrency and parallelism
–  Parallelism: physically simultaneous operations for performance
–  Concurrency: logically (and possibly physically) simultaneous

operations for convenience/simplicity
•  One way to get concurrency and parallelism is to use

multiple processes
–  The programs (code) of distinct processes are isolated from each

other
•  Threads are another way to get concurrency and

parallelism
–  Threads “share a process” – same address space, same OS

resources
–  Threads have private stack, CPU state – are schedulable

3

Concurrency/Parallelism

•  Imagine a web server, which might like to handle multiple requests
concurrently
–  While waiting for the credit card server to approve a purchase for one client,

it could be retrieving the data requested by another client from disk, and
assembling the response for a third client from cached information

•  Imagine a web client (browser), which might like to initiate multiple
requests concurrently
–  The CSE home page has dozens of “src= …” html commands, each of

which is going to involve a lot of sitting around! Wouldn’t it be nice to be
able to launch these requests concurrently?

•  Imagine a parallel program running on a multiprocessor, which might
like to employ “physical concurrency”
–  For example, multiplying two large matrices – split the output matrix into k

regions and compute the entries in each region concurrently, using k
processors

4

What’s needed?

•  In each of these examples of concurrency (web server, web
client, parallel program):
–  Everybody wants to run the same code
–  Everybody wants to access the same data
–  Everybody has the same privileges
–  Everybody uses the same resources (open files, network

connections, etc.)

•  But you’d like to have multiple hardware execution states:
–  an execution stack and stack pointer (SP)

•  traces state of procedure calls made
–  the program counter (PC), indicating the next instruction
–  a set of general-purpose processor registers and their values

5

How could we achieve this?

•  Given the process abstraction as we know it:
–  fork several processes
–  cause each to map to the same physical memory to share data

•  see the shmget() system call for one way to do this (kind of)

•  This is like making a pig fly – it’s really inefficient
–  space: PCB, page tables, etc.
–  time: creating OS structures, fork/copy address space, etc.

•  Some equally bad alternatives for some of the examples:
–  Entirely separate web servers
–  Manually programmed asynchronous programming (non-blocking I/

O) in the web client (browser)

6

Can we do better?

•  Key idea:
–  separate the concept of a process (address space, OS resources)
–  … from that of a minimal “thread of control” (execution state: stack,

stack pointer, program counter, registers)

•  This execution state is usually called a thread, or
sometimes, a lightweight process

7

thread

Threads and processes

•  Most modern OS’s (Mach (Mac OS), Chorus, Windows,
UNIX) therefore support two entities:
–  the process, which defines the address space and general process

attributes (such as open files, etc.)
–  the thread, which defines a sequential execution stream within a

process
•  A thread is bound to a single process / address space

–  address spaces, however, can have multiple threads executing
within them

–  sharing data between threads is cheap: all see the same address
space

–  creating threads is cheap too!
•  Threads become the unit of scheduling

–  processes / address spaces are just containers in which threads
execute

8

•  Threads are concurrent executions sharing an address
space (and some OS resources)

•  Address spaces provide isolation
–  If you can’t name it, you can’t read or write it

•  Hence, communicating between processes is expensive
–  Must go through the OS to move data from one address space to

another

•  Because threads are in the same address space,
communication is simple/cheap
–  Just update a shared variable!

9

The design space

10

address
space

thread

one thread per process
many processes

many threads per process
many processes

one thread per process
one process

many threads per process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

Key

(old) Process address space

11

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

(new) Address space with threads

12 © 2012 Gribble, Lazowska, Levy, Zahorjan 12

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

thread 1 stack

PC (T2)

SP (T2)
thread 2 stack

thread 3 stack

SP (T1)

SP (T3)

PC (T1)
PC (T3)

Process/thread separation

•  Concurrency (multithreading) is useful for:
–  handling concurrent events (e.g., web servers and clients)
–  building parallel programs (e.g., matrix multiply, ray tracing)
–  improving program structure (the Java argument)

•  Multithreading is useful even on a uniprocessor
–  even though only one thread can run at a time

•  Supporting multithreading – that is, separating the concept
of a process (address space, files, etc.) from that of a
minimal thread of control (execution state), is a big win
–  creating concurrency does not require creating new processes
–  “faster / better / cheaper”

13

Terminology

•  Just a note that there’s the potential for some confusion …
–  Old world: “process” == “address space + OS resources + single

thread”
–  New world: “process” typically refers to an address space + system

resources + all of its threads …
•  When we mean the “address space” we need to be explicit

   “thread” refers to a single thread of control within a process /
address space

•  A bit like “kernel” and “operating system” …
–  Old world: “kernel” == “operating system” and runs in “kernel

mode”
–  New world: “kernel” typically refers to the microkernel; lots of the

operating system runs in user mode

14

“Where do threads come from, Mommy?”

•  Natural answer: the OS is responsible for creating/
managing threads
–  For example, the kernel call to create a new thread would

•  allocate an execution stack within the process address space
•  create and initialize a Thread Control Block

–  stack pointer, program counter, register values
•  stick it on the ready queue

–  We call these kernel threads
–  There is a “thread name space”

•  Thread id’s (TID’s)
•  TID’s are integers (surprise!)

15

Kernel threads

16

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(thread create, destroy,
signal, wait, etc.)

CPU

Kernel threads

•  OS now manages threads and processes / address spaces
–  all thread operations are implemented in the kernel
–  OS schedules all of the threads in a system

•  if one thread in a process blocks (e.g., on I/O), the OS knows about
it, and can run other threads from that process

•  possible to overlap I/O and computation inside a process
•  Kernel threads are cheaper than processes

–  less state to allocate and initialize
•  But, they’re still pretty expensive for fine-grained use

–  orders of magnitude more expensive than a procedure call
–  thread operations are all system calls

•  context switch
•  argument checks

–  must maintain kernel state for each thread

17

“Where do threads come from, Mommy?” (2)

•  There is an alternative to kernel threads
•  Threads can also be managed at the user level (that is,

entirely from within the process)
–  a library linked into the program manages the threads

•  because threads share the same address space, the thread
manager doesn’t need to manipulate address spaces (which
only the kernel can do)

•  threads differ (roughly) only in hardware contexts (PC, SP,
registers), which can be manipulated by user-level code

•  the thread package multiplexes user-level threads on top of
kernel thread(s)

•  each kernel thread is treated as a “virtual processor”
–  we call these user-level threads

18

User-level threads

19

address
space

thread
os kernel

CPU

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

User-level threads: what the kernel sees

20

address
space

thread
os kernel

CPU

User-level threads: the full story

21

address
space

thread

Mach, NT,
Chorus,
Linux, …

os kernel

(kernel thread create, destroy,
signal, wait, etc.)

CPU

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

kernel threads

User-level threads

•  User-level threads are small and fast
–  managed entirely by user-level library

•  E.g., pthreads (libpthreads.a)
–  each thread is represented simply by a PC, registers, a stack, and a

small thread control block (TCB)
–  creating a thread, switching between threads, and synchronizing

threads are done via procedure calls
•  no kernel involvement is necessary!

–  user-level thread operations can be 10-100x faster than kernel
threads as a result

22

Performance example

•  On a 700MHz Pentium running Linux 2.2.16 (only the
relative numbers matter; ignore the ancient CPU!):

–  Processes
•  fork/exit: 251 µs

–  Kernel threads
•  pthread_create()/pthread_join(): 94 µs (2.5x faster)

–  User-level threads
•  pthread_create()/pthread_join: 4.5 µs (another 20x

faster)

23

Why?

Why?

User-level thread implementation

•  The OS schedules the kernel thread
•  The kernel thread executes user code, including the thread

support library and its associated thread scheduler
•  The thread scheduler determines when a user-level thread

runs
–  it uses queues to keep track of what threads are doing: run, ready,

wait
•  just like the OS and processes
•  but, implemented at user-level as a library

24

Thread interface

•  This is taken from the POSIX pthreads API:
–  rcode = pthread_create(&t, attributes,
start_procedure)

•  creates a new thread of control
•  new thread begins executing at start_procedure

–  pthread_cond_wait(condition_variable, mutex)
•  the calling thread blocks, sometimes called thread_block()

–  pthread_signal(condition_variable)
•  starts a thread waiting on the condition variable

–  pthread_exit()
•  terminates the calling thread

–  pthread_join(t)
•  waits for the named thread to terminate

25

Thread context switch

•  Very simple for user-level threads:
–  save context of currently running thread

•  push CPU state onto thread stack
–  restore context of the next thread

•  pop CPU state from next thread’s stack
–  return as the new thread

•  execution resumes at PC of next thread
–  Note: no changes to memory mapping required!

•  This is all done by assembly language
–  it works at the level of the procedure calling convention

•  thus, it cannot be implemented using procedure calls

26

How to keep a user-level thread from
hogging the CPU?

•  Strategy 1: force everyone to cooperate
–  a thread willingly gives up the CPU by calling yield()
–  yield() calls into the scheduler, which context switches to another

ready thread
–  what happens if a thread never calls yield()?

•  Strategy 2: use preemption
–  scheduler requests that a timer interrupt be delivered by the OS

periodically
•  usually delivered as a UNIX signal (man signal)
•  signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware
–  at each timer interrupt, scheduler gains control and context switches

as appropriate

27

What if a thread tries to do I/O?

•  The kernel thread “powering” it is lost for the duration of the
(synchronous) I/O operation!
–  The kernel thread blocks in the OS, as always
–  It maroons with it the state of the user-level thread

•  Could have one kernel thread “powering” each user-level
thread
–  “common case” operations (e.g., synchronization) would be quick

•  Could have a limited-size “pool” of kernel threads
“powering” all the user-level threads in the address space
–  the kernel will be scheduling these threads, obliviously to what’s

going on at user-level

28

Multiple kernel threads “powering”
each address space

29

address
space

thread
os kernel

user-level
thread library

(thread create, destroy,
signal, wait, etc.)

(kernel thread create, destroy,
signal, wait, etc.)

CPU

kernel threads

What if the kernel preempts a thread
holding a lock?

•  Other threads will be unable to enter the critical section and
will block (stall)

30

Addressing these problems

•  Effective coordination of kernel decisions and user-level
threads requires OS-to-user-level communication
–  OS notifies user-level that it is about to suspend a kernel thread

•  This is called “scheduler activations”
•  a research paper from UW with huge effect on practice
•  each process can request one or more kernel threads

–  process is given responsibility for mapping user-level
threads onto kernel threads

–  kernel promises to notify user-level before it suspends or
destroys a kernel thread

•  ACM TOCS 10,1

31

Summary

•  You really want multiple threads per address space
•  Kernel threads are much more efficient than processes, but

they’re still not cheap
–  all operations require a kernel call and parameter validation

•  User-level threads are:
–  really fast/cheap
–  great for common-case operations

•  creation, synchronization, destruction
–  can suffer in uncommon cases due to kernel obliviousness

•  I/O
•  preemption of a lock-holder

•  Scheduler activations are an answer
–  pretty subtle though

32

The design space

33

address
space

thread

one thread/process
many processes

many threads/process
many processes

one thread/process
one process

many threads/process
one process

MS/DOS

Java

older
UNIXes

Mach, NT,
Chorus,
Linux, …

