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What’s “in” a process? 

•  A process consists of (at least): 
–  An address space, containing 

•  the code (instructions) for the running program 
•  the data for the running program 

–  Thread state, consisting of 
•  The program counter (PC), indicating the next instruction 
•  The stack pointer register (implying the stack it points to) 
•  Other general purpose register values 

–  A set of OS resources 
•  open files, network connections, sound channels, … 

•  That’s a lot of concepts bundled together! 
•  Today: decompose … 

–  address space 
–  thread of control (stack, stack pointer, program counter, registers) 
–  OS resources 
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The Big Picture 

•  Threads are about concurrency and parallelism 
–  Parallelism:  physically simultaneous operations for performance 
–  Concurrency:  logically (and possibly physically) simultaneous 

operations for convenience/simplicity 
•  One way to get concurrency and parallelism is to use 

multiple processes 
–  The programs (code) of distinct processes are isolated from each 

other 
•  Threads are another way to get concurrency and 

parallelism 
–  Threads “share a process” – same address space, same OS 

resources 
–  Threads have private stack, CPU state – are schedulable 
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Concurrency/Parallelism 

•  Imagine a web server, which might like to handle multiple requests 
concurrently 
–  While waiting for the credit card server to approve a purchase for one client, 

it could be retrieving the data requested by another client from disk, and 
assembling the response for a third client from cached information 

•  Imagine a web client (browser), which might like to initiate multiple 
requests concurrently 
–  The CSE home page has dozens of “src= …” html commands, each of 

which is going to involve a lot of sitting around!  Wouldn’t it be nice to be 
able to launch these requests concurrently? 

•  Imagine a parallel program running on a multiprocessor, which might 
like to employ “physical concurrency” 
–  For example, multiplying two large matrices – split the output matrix into k 

regions and compute the entries in each region concurrently, using k 
processors 
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What’s needed? 

•  In each of these examples of concurrency (web server, web 
client, parallel program): 
–  Everybody wants to run the same code 
–  Everybody wants to access the same data 
–  Everybody has the same privileges 
–  Everybody uses the same resources (open files, network 

connections, etc.) 

•  But you’d like to have multiple hardware execution states: 
–  an execution stack and stack pointer (SP) 

•  traces state of procedure calls made 
–  the program counter (PC), indicating the next instruction 
–  a set of general-purpose processor registers and their values 
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How could we achieve this? 

•  Given the process abstraction as we know it: 
–  fork several processes 
–  cause each to map to the same physical memory to share data 

•  see the shmget() system call for one way to do this (kind of) 

•  This is like making a pig fly – it’s really inefficient 
–  space:  PCB, page tables, etc. 
–  time: creating OS structures, fork/copy address space, etc. 

•  Some equally bad alternatives for some of the examples: 
–  Entirely separate web servers 
–  Manually programmed asynchronous programming (non-blocking I/

O) in the web client (browser) 
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Can we do better? 

•  Key idea: 
–  separate the concept of a process (address space, OS resources) 
–  … from that of a minimal “thread of control” (execution state:  stack, 

stack pointer, program counter, registers) 

•  This execution state is usually called a thread, or 
sometimes, a lightweight process 
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Threads and processes 

•  Most modern OS’s (Mach (Mac OS), Chorus, Windows, 
UNIX) therefore support two entities: 
–  the process, which defines the address space and general process 

attributes (such as open files, etc.) 
–  the thread, which defines a sequential execution stream within a 

process 
•  A thread is bound to a single process / address space 

–  address spaces, however, can have multiple threads executing 
within them 

–  sharing data between threads is cheap: all see the same address 
space 

–  creating threads is cheap too! 
•  Threads become the unit of scheduling 

–  processes / address spaces are just containers in which threads 
execute 
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•  Threads are concurrent executions sharing an address 
space (and some OS resources) 

•  Address spaces provide isolation 
–  If you can’t name it, you can’t read or write it 

•  Hence, communicating between processes is expensive 
–  Must go through the OS to move data from one address space to 

another 

•  Because threads are in the same address space, 
communication is simple/cheap 
–  Just update a shared variable! 
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The design space 
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(old) Process address space 
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(new) Address space with threads 
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Process/thread separation 

•  Concurrency (multithreading) is useful for: 
–  handling concurrent events (e.g., web servers and clients) 
–  building parallel programs (e.g., matrix multiply, ray tracing) 
–  improving program structure (the Java argument) 

•  Multithreading is useful even on a uniprocessor 
–  even though only one thread can run at a time 

•  Supporting multithreading – that is, separating the concept 
of a process (address space, files, etc.) from that of a 
minimal thread of control (execution state), is a big win 
–  creating concurrency does not require creating new processes 
–  “faster / better / cheaper” 
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Terminology 

•  Just a note that there’s the potential for some confusion … 
–  Old world:  “process”  ==  “address space + OS resources + single 

thread” 
–  New world:  “process” typically refers to an address space + system 

resources + all of its threads … 
•  When we mean the “address space” we need to be explicit 

   “thread” refers to a single thread of control within a process / 
address space 

•  A bit like “kernel” and “operating system” … 
–  Old world:  “kernel”  ==  “operating system” and runs in “kernel 

mode” 
–  New world:  “kernel” typically refers to the microkernel; lots of the 

operating system runs in user mode 
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“Where do threads come from, Mommy?” 

•  Natural answer:  the OS is responsible for creating/
managing threads 
–  For example, the kernel call to create a new thread would 

•  allocate an execution stack within the process address space 
•  create and initialize a Thread Control Block 

–  stack pointer, program counter, register values 
•  stick it on the ready queue 

–  We call these kernel threads 
–  There is a “thread name space” 

•  Thread id’s (TID’s) 
•  TID’s are integers (surprise!) 
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Kernel threads 
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Kernel threads 

•  OS now manages threads and processes / address spaces 
–  all thread operations are implemented in the kernel 
–  OS schedules all of the threads in a system 

•  if one thread in a process blocks (e.g., on I/O), the OS knows about 
it, and can run other threads from that process 

•  possible to overlap I/O and computation inside a process 
•  Kernel threads are cheaper than processes 

–  less state to allocate and initialize 
•  But, they’re still pretty expensive for fine-grained use 

–  orders of magnitude more expensive than a procedure call 
–  thread operations are all system calls 

•  context switch 
•  argument checks 

–  must maintain kernel state for each thread 
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“Where do threads come from, Mommy?” (2) 

•  There is an alternative to kernel threads 
•  Threads can also be managed at the user level (that is, 

entirely from within the process) 
–  a library linked into the program manages the threads 

•  because threads share the same address space, the thread 
manager doesn’t need to manipulate address spaces (which 
only the kernel can do) 

•  threads differ (roughly) only in hardware contexts (PC, SP, 
registers), which can be manipulated by user-level code 

•  the thread package multiplexes user-level threads on top of 
kernel thread(s) 

•  each kernel thread is treated as a “virtual processor” 
–  we call these user-level threads 
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User-level threads 
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User-level threads: what the kernel sees 
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User-level threads: the full story 
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User-level threads 

•  User-level threads are small and fast 
–  managed entirely by user-level library 

•  E.g., pthreads (libpthreads.a) 
–  each thread is represented simply by a PC, registers, a stack, and a 

small thread control block (TCB) 
–  creating a thread, switching between threads, and synchronizing 

threads are done via procedure calls 
•  no kernel involvement is necessary! 

–  user-level thread operations can be 10-100x faster than kernel 
threads as a result 
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Performance example 

•  On a 700MHz Pentium running Linux 2.2.16 (only the 
relative numbers matter; ignore the ancient CPU!): 

–  Processes 
•  fork/exit: 251 µs 

–  Kernel threads 
•  pthread_create()/pthread_join(): 94 µs (2.5x faster) 

–  User-level threads 
•  pthread_create()/pthread_join: 4.5 µs (another 20x 

faster) 
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User-level thread implementation 

•  The OS schedules the kernel thread 
•  The kernel thread executes user code, including the thread 

support library and its associated thread scheduler 
•  The thread scheduler determines when a user-level thread 

runs 
–  it uses queues to keep track of what threads are doing:  run, ready, 

wait 
•  just like the OS and processes 
•  but, implemented at user-level as a library 
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Thread interface 

•  This is taken from the POSIX pthreads API: 
–  rcode = pthread_create(&t, attributes, 
start_procedure) 

•  creates a new thread of control 
•  new thread begins executing at start_procedure 

–  pthread_cond_wait(condition_variable, mutex) 
•  the calling thread blocks, sometimes called thread_block() 

–  pthread_signal(condition_variable) 
•  starts a thread waiting on the condition variable 

–  pthread_exit() 
•  terminates the calling thread 

–  pthread_join(t) 
•  waits for the named thread to terminate 
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Thread context switch 

•  Very simple for user-level threads: 
–  save context of currently running thread 

•  push CPU state onto thread stack 
–  restore context of the next thread 

•  pop CPU state from next thread’s stack 
–  return as the new thread 

•  execution resumes at PC of next thread 
–  Note:  no changes to memory mapping required! 

•  This is all done by assembly language 
–  it works at the level of the procedure calling convention 

•  thus, it cannot be implemented using procedure calls 
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How to keep a user-level thread from 
hogging the CPU? 

•  Strategy 1: force everyone to cooperate 
–  a thread willingly gives up the CPU by calling yield() 
–  yield() calls into the scheduler, which context switches to another 

ready thread 
–  what happens if a thread never calls yield()? 

•  Strategy 2: use preemption 
–  scheduler requests that a timer interrupt be delivered by the OS 

periodically 
•  usually delivered as a UNIX signal (man signal) 
•  signals are just like software interrupts, but delivered to user-

level by the OS instead of delivered to OS by hardware 
–  at each timer interrupt, scheduler gains control and context switches 

as appropriate 

27 



What if a thread tries to do I/O? 

•  The kernel thread “powering” it is lost for the duration of the 
(synchronous) I/O operation! 
–  The kernel thread blocks in the OS, as always 
–  It maroons with it the state of the user-level thread 

•  Could have one kernel thread “powering” each user-level 
thread 
–  “common case” operations (e.g., synchronization) would be quick 

•  Could have a limited-size “pool” of kernel threads 
“powering” all the user-level threads in the address space 
–  the kernel will be scheduling these threads, obliviously to what’s 

going on at user-level 
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Multiple kernel threads “powering” 
each address space 
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What if the kernel preempts a thread 
holding a lock? 

•  Other threads will be unable to enter the critical section and 
will block (stall) 
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Addressing these problems 

•  Effective coordination of kernel decisions and user-level 
threads requires OS-to-user-level communication 
–  OS notifies user-level that it is about to suspend a kernel thread 

•  This is called “scheduler activations” 
•  a research paper from UW with huge effect on practice 
•  each process can request one or more kernel threads 

–  process is given responsibility for mapping user-level 
threads onto kernel threads 

–  kernel promises to notify user-level before it suspends or 
destroys a kernel thread 

•  ACM TOCS 10,1 
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Summary 

•  You really want multiple threads per address space 
•  Kernel threads are much more efficient than processes, but 

they’re still not cheap 
–  all operations require a kernel call and parameter validation 

•  User-level threads are: 
–  really fast/cheap 
–  great for common-case operations 

•  creation, synchronization, destruction 
–  can suffer in uncommon cases due to kernel obliviousness 

•  I/O 
•  preemption of a lock-holder 

•  Scheduler activations are an answer 
–  pretty subtle though 
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The design space 
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