
Operating Systems

Synchronization

Lecture 5
Michael O’Boyle

1

Temporal relations

User view of parallel threads

• Instructions executed by a single thread are totally ordered
– A < B < C < …

• In absence of synchronization,
– instructions executed by distinct threads must be considered

unordered / simultaneous
– Not X < X’, and not X’ < X

Hardware largely supports this

2

3

Example: In the beginning...
main()

A

B

pthread_create()

A'
foo()

C

B'

• A < B < C
• A' < B'
• A < A'
• C == A'
• C == B'

Y-axis is “time.”

Could be one CPU, could
be multiple CPUs (cores).

Example

Critical Sections / Mutual Exclusion

• Sequences of instructions that may get incorrect results if
executed simultaneously are called critical sections

• Race condition results depend on timing
• Mutual exclusion means “not simultaneous”

– A < B or B < A
– We don’t care which

• Forcing mutual exclusion between two critical section
executions
– is sufficient to ensure correct execution
– guarantees ordering

4

5

Critical sections

Possibly incorrect Correct Correct

T1 T2 T1 T2 T1 T2

is the “happens-before” relation

Critical sections

When do critical sections arise?

• One common pattern:
– read-modify-write of
– a shared value (variable)
– in code that can be executed by concurrent threads

• Shared variable:
– Globals and heap-allocated variables
– NOT local variables (which are on the stack)

6

Race conditions

• A program has a race condition (data race) if the result of
an executing depends on timing
– i.e., is non-deterministic

• Typical symptoms
– I run it on the same data, and sometimes it prints 0 and sometimes it

prints 4
– I run it on the same data, and sometimes it prints 0 and sometimes it

crashes

7

Example: shared bank account

• Suppose we have to implement a function to withdraw
money from a bank account:

int withdraw(account, amount) {

int balance = get_balance(account); // read

balance -= amount; // modify

put_balance(account, balance); // write

spit out cash;

}

• Now suppose that you and your partner share a bank
account with a balance of £100.00
– what happens if you both go to separate CashPoint machines, and

simultaneously withdraw £10.00 from the account?

8

• Assume the bank’s application is multi-threaded
• A random thread is assigned a transaction when that

transaction is submitted

9

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

Interleaved schedules

• The problem is that the execution of the two threads can be
interleaved:

• What’s the account balance after this sequence?
– who’s happy, the bank or you?

• How often is this sequence likely to occur?

10

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

put_balance(account, balance);

spit out cash;

Execution sequence
as seen by CPU

context switch

context switch

Other Execution Orders

• Which interleavings are ok? Which are not?

11

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

int withdraw(account, amount) {

int balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

spit out cash;

}

How About Now?

• Morals:
– Interleavings are hard to reason about

• We make lots of mistakes
• Control-flow analysis is hard for tools to get right

– Identifying critical sections and ensuring mutually exclusive access
can make things easier

12

int xfer(from, to, machine) {

withdraw(from, machine);

deposit(to, machine);

}

int xfer(from, to, machine) {

withdraw(from, machine);

deposit(to, machine);

}

Another example

13

i++; i++;

Correct critical section requirements

• Correct critical sections have the following requirements
– mutual exclusion

• at most one thread is in the critical section
– progress

• if thread T is outside the critical section, then T cannot prevent
thread S from entering the critical section

– bounded waiting (no starvation)
• if thread T is waiting on the critical section, then T will eventually

enter the critical section
– assumes threads eventually leave critical sections

– performance
• the overhead of entering and exiting the critical section is small

with respect to the work being done within it

14

Implementing Mutual Exclusion
Implementing Mutual Exclusion

How do we do it?

I via hardware: special machine instructions

I via OS support: OS provides primitives via system call

I via software: entirely by user code

Of course, OS support needs internal hardware or software implementation.
How do we do it in software?

We assume that mutual exclusion exists in hardware, so that memory
access is atomic: only one read or write to a given memory location at a
time. (True in almost all architectures.) (Exercise: is such an assumption
necessary?)

We will now try to develop a solution for mutual exclusion of two processes,
P0 and P1. (Let ı̂ mean 1� i .)

Exercise: is it (a) true, (b) obvious, that doing it for two processes is
enough?

78 / 184

15

Implementing Mutual Exclusion

How do we do it?

I via hardware: special machine instructions

I via OS support: OS provides primitives via system call

I via software: entirely by user code

Of course, OS support needs internal hardware or software implementation.
How do we do it in software?

We assume that mutual exclusion exists in hardware, so that memory
access is atomic: only one read or write to a given memory location at a
time. (True in almost all architectures.) (Exercise: is such an assumption
necessary?)

We will now try to develop a solution for mutual exclusion of two processes,
P0 and P1. (Let ı̂ mean 1� i .)

Exercise: is it (a) true, (b) obvious, that doing it for two processes is
enough?

78 / 184

Implementing Mutual Exclusion

How do we do it?

I via hardware: special machine instructions

I via OS support: OS provides primitives via system call

I via software: entirely by user code

Of course, OS support needs internal hardware or software implementation.
How do we do it in software?

We assume that mutual exclusion exists in hardware, so that memory
access is atomic: only one read or write to a given memory location at a
time. (True in almost all architectures.) (Exercise: is such an assumption
necessary?)

We will now try to develop a solution for mutual exclusion of two processes,
P0 and P1. (Let ı̂ mean 1� i .)

Exercise: is it (a) true, (b) obvious, that doing it for two processes is
enough?

78 / 184

Mutex – first attempt
Mutex – first attempt

Suppose we have a global variable turn. We could say that when
Pi wishes to enter critical section, it loops checking turn, and can
proceed i↵ turn = i . When done, flips turn. In pseudocode:

while (turn != i) { }
/* critical section */
turn = ı̂;

This has obvious problems:

I processes busy-wait

I the processes must take strict turns

although it does enforce mutex.

79 / 184

16

Mutex - Second attempt
Mutex – second attempt

Need to keep state of each process, not just id of next process.

So have an array of two boolean flags, flag[i], indicating whether Pi is
in critical. Then Pi does:

while (flag[ı̂]) { }
flag[i] = true;
/* critical section */
flag[i] = false;

This doesn’t even enforce mutex: P0 and P1 might check each other’s
flag, then both set own flags to true and enter critical section.

80 / 184

17

Mutex – Third attempt

18

Mutex – third attempt

Maybe set one’s own flag before checking the other’s?

flag[i] = true;
while (flag[ı̂]) { }
/* critical section */
flag[i] = false;

This does enforce mutex. (Exercise: prove it.)

But now both processes can set flag to true, then loop for ever waiting
for the other! This is deadlock.

81 / 184

Mutex – Fourth attempt
Mutex – fourth attempt

Deadlock arose because processes insisted on entering critical section and
busy-waited. So if other process’s flag is set, let’s clear our flag for a bit
to allow it to proceed:

flag[i] = true;
while (flag[ı̂]) {

flag[i] = false;
/* sleep for a bit */
flag[i] = true;

}
/* critical section */
flag[i] = false;

OK, but now it is possible for the processes to run in exact synchrony and
keep deferring to each other – livelock.

82 / 184

19

Peterson’s Algorithm Mutex – Peterson’s algorithm

Peterson came up with a much simpler and more elegant (and generaliz-
able) algorithm.

flag[i] = true;
turn = ı̂;
while (flag[ı̂] && turn == ı̂) { }
/* critical section */
flag[i] = false;

Compulsory Exercise: show that this works. (Use textbooks if necessary.)

84 / 184

20

Works but we want something easier for programmers

Mechanisms for building critical sections

• Spinlocks
– primitive, minimal semantics; used to build others

• Semaphores (and non-spinning locks)
– basic, easy to get the hang of, somewhat hard to program with

• Monitors
– higher level, requires language support, implicit operations
– easier to program with; Java “synchronized()” as an example

• Messages
– simple model of communication and synchronization based on

(atomic) transfer of data across a channel
– direct application to distributed systems

21

Locks

• A lock is a memory object with two operations:
– acquire(): obtain the right to enter the critical section
– release(): give up the right to be in the critical section

• acquire() prevents progress of the thread until the lock
can be acquired

• Note: terminology varies: acquire/release, lock/unlock

22

23

Locks: Example execution

lock()

unlock()

lock()

unlock()

Two choices:
• Spin
• Block
• (Spin-then-block)

Locks: Example

Acquire/Release

• Threads pair up calls to acquire() and release()
– between acquire()and release(), the thread holds the lock
– acquire() does not return until the caller “owns” (holds) the lock

• at most one thread can hold a lock at a time
• What happens if the calls aren’t paired

– I acquire, but neglect to release?
• What happens if the two threads acquire different locks

– I think that access to a particular shared data structure is mediated
by lock A, and you think it’s mediated by lock B?

• What is the right granularity of locking?

24

Using locks

• What happens when green tries to acquire the lock?

25

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

Spinlocks

• How do we implement spinlocks? Here’s one attempt:

• Race condition in acquire
• Could use Peterson – but assumes no compiler

optimization

26

struct lock_t {

int held = 0;

}

void acquire(lock) {

while (lock->held);

lock->held = 1;

}

void release(lock) {

lock->held = 0;

}

the caller “busy-waits”,
or spins, for lock to be
released ⇒ hence spinlock

Peterson’s Algorithm Mutex – Peterson’s algorithm

Peterson came up with a much simpler and more elegant (and generaliz-
able) algorithm.

flag[i] = true;
turn = ı̂;
while (flag[ı̂] && turn == ı̂) { }
/* critical section */
flag[i] = false;

Compulsory Exercise: show that this works. (Use textbooks if necessary.)

84 / 184

27

If flag[1-i] hoisted, as loop invariant, then fails

Implementing spinlocks

• Problem is that implementation of spinlocks has critical
sections, too!
– the acquire/release must be atomic

• atomic == executes as though it could not be interrupted
• code that executes “all or nothing”

– Compiler can hoist code that is invariant
• Need help from the hardware

– atomic instructions
• test-and-set, compare-and-swap, …

28

Spinlocks: Hardware Test-and-Set

• CPU provides the following as one atomic instruction:

• Remember, this is a single atomic instruction …

29

bool test_and_set(bool *flag) {

bool old = *flag;

*flag = True;

return old;

}

Implementing spinlocks using Test-and-Set

• So, to fix our broken spinlocks:

– mutual exclusion? (at most one thread in the critical section)
– progress? (T outside cannot prevent S from entering)
– bounded waiting? (waiting T will eventually enter)
– performance? (low overhead (modulo the spinning part …))

30

struct lock {

int held = 0;

}

void acquire(lock) {

while(test_and_set(&lock->held));

}

void release(lock) {

lock->held = 0;

}

Reminder of use …

• How does a thread blocked on an “acquire” (that is, stuck in
a test-and-set loop) yield the CPU?
– calls yield() (spin-then-block)
– there’s an involuntary context switch (e.g., timer interrupt) 31

int withdraw(account, amount) {

acquire(lock);

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

}

acquire(lock)

balance = get_balance(account);

balance -= amount;

balance = get_balance(account);

balance -= amount;

put_balance(account, balance);

release(lock);

spit out cash;

put_balance(account, balance);
release(lock);

acquire(lock)

cr
iti

ca
l

se
ct

io
n

spit out cash;

Problems with spinlocks

• Spinlocks work, but are wasteful!
– if a thread is spinning on a lock, the thread holding the lock cannot

make progress
• You’ll spin for a scheduling quantum

– (pthread_spin_t)

• Only want spinlocks as primitives to build higher-level
synchronization constructs
– Ok as ensure acquiring only happens for a short time

• We’ll see later how to build blocking locks
– But there is overhead – can be cheaper to spin

32

Summary

• Synchronization introduces temporal ordering
• Synchronization can eliminate races
• Peterson’s Algorithm
• Synchronization can be provided by locks, semaphores,

monitors, messages …
• Spinlocks are the lowest-level mechanism

– primitive in terms of semantics – error-prone
– implemented by spin-waiting (crude) or by disabling interrupts (also

crude, and can only be done in the kernel)

33

