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What is a “process”? 

•  The process is the OS’s abstraction for execution 
–  A process is a program in execution 

•  Simplest (classic) case:  a sequential process 
–  An address space (an abstraction of memory) 
–  A single thread of execution (an abstraction of the CPU) 

•  A sequential process is: 
–  The unit of execution 
–  The unit of scheduling 
–  The dynamic (active) execution context 

•  vs. the program – static, just a bunch of bytes 
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What’s “in” a process? 

•  A process consists of (at least): 
–  An address space, containing 

•  the code (instructions) for the running program 
•  the data for the running program (static data, heap data, stack) 

–  CPU state, consisting of 
•  The program counter (PC), indicating the next instruction 
•  The stack pointer  
•  Other general purpose register values 

–  A set of OS resources 
•  open files, network connections, sound channels, … 

•  In other words, it’s all the stuff you need to run the program 
–  or to re-start it, if it’s interrupted at some point 
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A process’s address space (idealized) 
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The OS’s process namespace 

•  (Like most things, the particulars depend on the specific 
OS, but the principles are general) 

•  The name for a process is called a process ID (PID) 
–  An integer 

•  The PID namespace is global to the system 
–  Only one process at a time has a particular PID 

•  Operations that create processes return a PID 
–  E.g., fork() 

•  Operations on processes take PIDs as an argument 
–  E.g., kill(), wait(), nice() 
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Representation of processes by the OS 

•  The OS maintains a data structure to keep track of a 
process’s state 
–  Called the process control block (PCB) or process descriptor 
–  Identified by the PID 

•  OS keeps all of a process’s execution state in (or linked 
from) the PCB when the process isn’t running 
–  PC, SP, registers, etc. 
–  when a process is unscheduled, the state is transferred out of the 

hardware into the PCB 
–  (when a process is running, its state is spread between the PCB and 

the CPU) 
•  Note:  It’s natural to think that there must be some esoteric 

techniques being used 
–  fancy data structures that you’d never think of yourself 

 Wrong!  It’s pretty much just what you’d think of! 
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The PCB 

•  The PCB is a data structure with many, many fields: 
–  process ID (PID) 
–  parent process ID 
–  execution state 
–  program counter, stack pointer, registers 
–  address space info 
–  UNIX user id, group id 
–  scheduling priority 
–  accounting info 
–  pointers for state queues 

•  In Linux: 
–  defined in task_struct (include/linux/sched.h) 
–  over 95 fields!!! 
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PCBs and CPU state 

•  When a process is running, its CPU state is inside the CPU 
–  PC, SP, registers 
–  CPU contains current values 

•  When the OS gets control because of a … 
–  Trap:  Program executes a syscall 
–  Exception:  Program does something unexpected (e.g., page fault) 
–  Interrupt:  A hardware device requests service 

the OS saves the CPU state of the running process in that 
process’s PCB 
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•  When the OS returns the process to the running state, it 
loads the hardware registers with values from that process’s 
PCB – general purpose registers, stack pointer, instruction 
pointer 

•  The act of switching the CPU from one process to another 
is called a context switch 
–  systems may do 100s or 1000s of switches/sec. 
–  takes a few microseconds on today’s hardware 

•  Choosing which process to run next is called scheduling 
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Process execution states 

•  Each process has an execution state, which indicates what 
it’s currently doing 
–  ready: waiting to be assigned to a CPU 

•  could run, but another process has the CPU 
–  running: executing on a CPU 

•  it’s the process that currently controls the CPU 
–  waiting (aka “blocked”): waiting for an event, e.g., I/O completion, or 

a message from (or the completion of) another process 
•  cannot make progress until the event happens 

•  As a process executes, it moves from state to state 
–  UNIX: run ps, STAT column shows current state 
–  which state is a process in most of the time? 
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Process states and state transitions 
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State queues 

•  The OS maintains a collection of queues that represent the 
state of all processes in the system 
–  typically one queue for each state 

•  e.g., ready, waiting, … 
–  each PCB is queued onto a state queue according to the current 

state of the process it represents 
–  as a process changes state, its PCB is unlinked from one queue, 

and linked onto another 

•  Once again, this is just as straightforward as it sounds!  The 
PCBs are moved between queues, which are represented 
as linked lists.  There is no magic! 
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State queues 

•  There may be many wait queues, one for each type of wait 
(particular device, timer, message, …) 
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PCBs and state queues 

•  PCBs are data structures 
–  dynamically allocated inside OS memory 

•  When a process is created: 
–  OS allocates a PCB for it 
–  OS initializes PCB 
–  (OS does other things not related to the PCB) 
–  OS puts PCB on the correct queue 

•  As a process computes: 
–  OS moves its PCB from queue to queue 

•  When a process is terminated: 
–  PCB may be retained for a while (to receive signals, etc.) 
–  eventually, OS deallocates the PCB 
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Process creation 

•  New processes are created by existing processes 
–  creator is called the parent 
–  created process is called the child 

•  UNIX: do ps, look for PPID field 
–  what creates the first process, and when? 
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Process creation semantics 

•  (Depending on the OS) child processes inherit certain 
attributes of the parent 
–  Examples: 

•  Open file table:  implies stdin/stdout/stderr 
•  On some systems, resource allocation to parent may be divided 

among children 

•  (In Unix) when a child is created, the parent may either wait 
for the child to finish, or continue in parallel 
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UNIX process creation details 

•  UNIX process creation through fork() system call 
–  creates and initializes a new PCB 

•  initializes kernel resources of new process with resources of 
parent (e.g., open files) 

•  initializes PC, SP to be same as parent 
–  creates a new address space 

•  initializes new address space with a copy of the entire contents 
of the address space of the parent 

–  places new PCB on the ready queue 
•  the fork() system call “returns twice” 

–  once into the parent, and once into the child 
•  returns the child’s PID to the parent 
•  returns 0 to the child 

•  fork() = “clone me” 
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testparent – use of fork( ) 

#include <sys/types.h> 
#include <unistd.h> 
#include <stdio.h> 
 
int main(int argc, char **argv) 
{ 
  char *name = argv[0]; 
  int pid = fork(); 
  if (pid == 0) { 
    printf(“Child of %s is %d\n”, name, pid); 
    return 0; 
  } else { 
    printf(“My child is %d\n”, pid); 
    return 0; 
  }  
} 
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testparent output 

spinlock% gcc -o testparent testparent.c 
spinlock% ./testparent 
My child is 486 
Child of testparent is 0 
spinlock% ./testparent 
Child of testparent is 0 
My child is 571 
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exec() vs. fork() 

•  Q:  So how do we start a new program, instead of just 
forking the old program? 

•  A:  First fork, then exec 
–  int exec(char * prog, char * argv[]) 

•  exec() 
–  stops the current process 
–  loads program ‘prog’ into the address space 

•  i.e., over-writes the existing process image 
–  initializes hardware context, args for new program 
–  places PCB onto ready queue 
–  note: does not create a new process! 
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•  So, to run a new program: 
–  fork() 
–  Child process does an exec() 
–  Parent either waits for the child to complete, or not 
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Making process creation faster 

•  The semantics of fork() say the child’s address space is a 
copy of the parent’s 

•  Implementing fork() that way is slow 
–  Have to allocate physical memory for the new address space 
–  Have to set up child’s page tables to map new address space 
–  Have to copy parent’s address space contents into child’s address 

space 
•  Which you are likely to immediately blow away with an exec() 
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Method 1:  vfork() 

•  vfork() is the older (now uncommon) of the two approaches 
we’ll discuss 

•  Instead of “child’s address space is a copy of the parent’s,” 
the semantics are “child’s address space is the parent’s” 
–  With a “promise” that the child won’t modify the address space 

before doing an execve() 
•  Unenforced!  You use vfork() at your own peril 

–  When execve() is called, a new address space is created and it’s 
loaded with the new executable 

–  Parent is blocked until execve() is executed by child 
–  Saves wasted effort of duplicating parent’s address space, just to 

blow it away 
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Method 2:  copy-on-write 

•  Retains the original semantics, but copies “only what is 
necessary” rather than the entire address space 

•  On fork(): 
–  Create a new address space 
–  Initialize page tables with same mappings as the parent’s (i.e., they 

both point to the same physical memory) 
•  No copying of address space contents have occurred at this 

point – with the sole exception of the top page of the stack 
–  Set both parent and child page tables to make all pages read-only 
–  If either parent or child writes to memory, an exception occurs 
–  When exception occurs, OS copies the page, adjusts page tables, 

etc. 
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UNIX shells 

int main(int argc, char **argv) 
{ 
  while (1) { 
    printf (“$ “); 
    char *cmd = get_next_command(); 
    int pid = fork(); 
    if (pid == 0) { 
       exec(cmd); 
       panic(“exec failed!”); 
    } else { 
       wait(pid); 
    } 
  } 
} 32 



Inter-process communications 

•  Many ways exist 
–  Shared-Memory 
–  Message-Passing 
–  Signal 
–  RPC 
–  Socket 
–  Pipe 
–  … 

–  Read Chapter 3.4 and 3.6 J 
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