
Operating Systems
Fall 2014

Processes

Myungjin Lee
myungjin.lee@ed.ac.uk

1

What is a “process”?

•  The process is the OS’s abstraction for execution
–  A process is a program in execution

•  Simplest (classic) case: a sequential process
–  An address space (an abstraction of memory)
–  A single thread of execution (an abstraction of the CPU)

•  A sequential process is:
–  The unit of execution
–  The unit of scheduling
–  The dynamic (active) execution context

•  vs. the program – static, just a bunch of bytes

2

address space

thread

What’s “in” a process?

•  A process consists of (at least):
–  An address space, containing

•  the code (instructions) for the running program
•  the data for the running program (static data, heap data, stack)

–  CPU state, consisting of
•  The program counter (PC), indicating the next instruction
•  The stack pointer
•  Other general purpose register values

–  A set of OS resources
•  open files, network connections, sound channels, …

•  In other words, it’s all the stuff you need to run the program
–  or to re-start it, if it’s interrupted at some point

3

A process’s address space (idealized)

4

0x00000000

0xFFFFFFFF

address space

code
(text segment)

static data
(data segment)

heap
(dynamic allocated mem)

stack
(dynamic allocated mem)

PC

SP

The OS’s process namespace

•  (Like most things, the particulars depend on the specific
OS, but the principles are general)

•  The name for a process is called a process ID (PID)
–  An integer

•  The PID namespace is global to the system
–  Only one process at a time has a particular PID

•  Operations that create processes return a PID
–  E.g., fork()

•  Operations on processes take PIDs as an argument
–  E.g., kill(), wait(), nice()

5

Representation of processes by the OS

•  The OS maintains a data structure to keep track of a
process’s state
–  Called the process control block (PCB) or process descriptor
–  Identified by the PID

•  OS keeps all of a process’s execution state in (or linked
from) the PCB when the process isn’t running
–  PC, SP, registers, etc.
–  when a process is unscheduled, the state is transferred out of the

hardware into the PCB
–  (when a process is running, its state is spread between the PCB and

the CPU)
•  Note: It’s natural to think that there must be some esoteric

techniques being used
–  fancy data structures that you’d never think of yourself

 Wrong! It’s pretty much just what you’d think of!
6

The PCB

•  The PCB is a data structure with many, many fields:
–  process ID (PID)
–  parent process ID
–  execution state
–  program counter, stack pointer, registers
–  address space info
–  UNIX user id, group id
–  scheduling priority
–  accounting info
–  pointers for state queues

•  In Linux:
–  defined in task_struct (include/linux/sched.h)
–  over 95 fields!!!

7

PCBs and CPU state

•  When a process is running, its CPU state is inside the CPU
–  PC, SP, registers
–  CPU contains current values

•  When the OS gets control because of a …
–  Trap: Program executes a syscall
–  Exception: Program does something unexpected (e.g., page fault)
–  Interrupt: A hardware device requests service

the OS saves the CPU state of the running process in that
process’s PCB

8

•  When the OS returns the process to the running state, it
loads the hardware registers with values from that process’s
PCB – general purpose registers, stack pointer, instruction
pointer

•  The act of switching the CPU from one process to another
is called a context switch
–  systems may do 100s or 1000s of switches/sec.
–  takes a few microseconds on today’s hardware

•  Choosing which process to run next is called scheduling

9

10

This is (a
simplification of)

what each of
those PCBs looks

like inside!

Process ID

Pointer to parent

List of children

Process state

Pointer to address space descriptor

Program counter
stack pointer

(all) register values

uid (user id)
gid (group id)

euid (effective user id)

Open file list

Scheduling priority

Accounting info

Pointers for state queues

Exit (“return”) code value

Process execution states

•  Each process has an execution state, which indicates what
it’s currently doing
–  ready: waiting to be assigned to a CPU

•  could run, but another process has the CPU
–  running: executing on a CPU

•  it’s the process that currently controls the CPU
–  waiting (aka “blocked”): waiting for an event, e.g., I/O completion, or

a message from (or the completion of) another process
•  cannot make progress until the event happens

•  As a process executes, it moves from state to state
–  UNIX: run ps, STAT column shows current state
–  which state is a process in most of the time?

11

Process states and state transitions

12

running

ready

blocked

trap or exception
(I/O, page fault,

etc.)

interrupt
(unschedule)

dispatch /
schedule

interrupt
(I/O complete)

You can create
and destroy
processes!

create

terminate

State queues

•  The OS maintains a collection of queues that represent the
state of all processes in the system
–  typically one queue for each state

•  e.g., ready, waiting, …
–  each PCB is queued onto a state queue according to the current

state of the process it represents
–  as a process changes state, its PCB is unlinked from one queue,

and linked onto another

•  Once again, this is just as straightforward as it sounds! The
PCBs are moved between queues, which are represented
as linked lists. There is no magic!

13

State queues

•  There may be many wait queues, one for each type of wait
(particular device, timer, message, …)

14

head ptr
tail ptr

firefox (1365) emacs (948) ls (1470)

cat (1468) firefox (1207) head ptr
tail ptr

Wait queue header

Ready queue header

These are PCBs!

PCBs and state queues

•  PCBs are data structures
–  dynamically allocated inside OS memory

•  When a process is created:
–  OS allocates a PCB for it
–  OS initializes PCB
–  (OS does other things not related to the PCB)
–  OS puts PCB on the correct queue

•  As a process computes:
–  OS moves its PCB from queue to queue

•  When a process is terminated:
–  PCB may be retained for a while (to receive signals, etc.)
–  eventually, OS deallocates the PCB

15

Process creation

•  New processes are created by existing processes
–  creator is called the parent
–  created process is called the child

•  UNIX: do ps, look for PPID field
–  what creates the first process, and when?

16

17

Process creation semantics

•  (Depending on the OS) child processes inherit certain
attributes of the parent
–  Examples:

•  Open file table: implies stdin/stdout/stderr
•  On some systems, resource allocation to parent may be divided

among children

•  (In Unix) when a child is created, the parent may either wait
for the child to finish, or continue in parallel

18

UNIX process creation details

•  UNIX process creation through fork() system call
–  creates and initializes a new PCB

•  initializes kernel resources of new process with resources of
parent (e.g., open files)

•  initializes PC, SP to be same as parent
–  creates a new address space

•  initializes new address space with a copy of the entire contents
of the address space of the parent

–  places new PCB on the ready queue
•  the fork() system call “returns twice”

–  once into the parent, and once into the child
•  returns the child’s PID to the parent
•  returns 0 to the child

•  fork() = “clone me”
19

20

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

21

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

testparent – use of fork()

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main(int argc, char **argv)
{
 char *name = argv[0];
 int pid = fork();
 if (pid == 0) {
 printf(“Child of %s is %d\n”, name, pid);
 return 0;
 } else {
 printf(“My child is %d\n”, pid);
 return 0;
 }
}
 22

testparent output

spinlock% gcc -o testparent testparent.c
spinlock% ./testparent
My child is 486
Child of testparent is 0
spinlock% ./testparent
Child of testparent is 0
My child is 571

23

exec() vs. fork()

•  Q: So how do we start a new program, instead of just
forking the old program?

•  A: First fork, then exec
–  int exec(char * prog, char * argv[])

•  exec()
–  stops the current process
–  loads program ‘prog’ into the address space

•  i.e., over-writes the existing process image
–  initializes hardware context, args for new program
–  places PCB onto ready queue
–  note: does not create a new process!

24

•  So, to run a new program:
–  fork()
–  Child process does an exec()
–  Parent either waits for the child to complete, or not

25

26

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

identical
copy

(with sole
exception

of PID
argument
on the top

of the
stack)

similar, but different
in key ways

27

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child address
space

(code, static
data, heap,

stack)

Child
PCB

Making process creation faster

•  The semantics of fork() say the child’s address space is a
copy of the parent’s

•  Implementing fork() that way is slow
–  Have to allocate physical memory for the new address space
–  Have to set up child’s page tables to map new address space
–  Have to copy parent’s address space contents into child’s address

space
•  Which you are likely to immediately blow away with an exec()

28

Method 1: vfork()

•  vfork() is the older (now uncommon) of the two approaches
we’ll discuss

•  Instead of “child’s address space is a copy of the parent’s,”
the semantics are “child’s address space is the parent’s”
–  With a “promise” that the child won’t modify the address space

before doing an execve()
•  Unenforced! You use vfork() at your own peril

–  When execve() is called, a new address space is created and it’s
loaded with the new executable

–  Parent is blocked until execve() is executed by child
–  Saves wasted effort of duplicating parent’s address space, just to

blow it away

29

30

Parent
address space

(code, static
data, heap,

stack)

Parent
PCB

Child
PCB

similar, but different
in key ways

Vfork()

Method 2: copy-on-write

•  Retains the original semantics, but copies “only what is
necessary” rather than the entire address space

•  On fork():
–  Create a new address space
–  Initialize page tables with same mappings as the parent’s (i.e., they

both point to the same physical memory)
•  No copying of address space contents have occurred at this

point – with the sole exception of the top page of the stack
–  Set both parent and child page tables to make all pages read-only
–  If either parent or child writes to memory, an exception occurs
–  When exception occurs, OS copies the page, adjusts page tables,

etc.

31

UNIX shells

int main(int argc, char **argv)
{
 while (1) {
 printf (“$ “);
 char *cmd = get_next_command();
 int pid = fork();
 if (pid == 0) {
 exec(cmd);
 panic(“exec failed!”);
 } else {
 wait(pid);
 }
 }
} 32

Inter-process communications

•  Many ways exist
–  Shared-Memory
–  Message-Passing
–  Signal
–  RPC
–  Socket
–  Pipe
–  …

–  Read Chapter 3.4 and 3.6 J

33

