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Overview 

•  Architecture impact 
•  User operating interaction 

–  User vs kernel 
–  Syscall  

•  Operating System structure 
–  Layers 
–  Examples 
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Lower-level architecture affects (is affected by)  
the OS 

•  The operating system supports sharing and protection 
–  multiple applications can run concurrently, sharing resources 
–  a buggy or malicious application cannot  disrupt other applications or 

the system 

•  There are many approaches to achieving this 
•  The architecture determines which approaches are viable 

(reasonably efficient, or even possible) 
–  includes instruction set  (synchronization, I/O, …) 
–  also hardware components like MMU or DMA controllers 
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Architecture support for the OS 

•  Architectural support can  simplify OS tasks 
–  e.g.: early PC operating systems (DOS, MacOS) lacked support for 

virtual memory, in part because at that time PCs lacked necessary 
hardware support 

•  Until  recently, Intel-based PCs still lacked support for 64-bit 
addressing  
–  has been available for a decade on other platforms:  MIPS, Alpha, 

IBM, etc… 
–  Changed driven by AMD’s 64-bit architecture 
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Architectural features affecting OS’s 

•  These features were built primarily to support OS’s: 
–  timer (clock) operation 
–  synchronization instructions  

•  e.g., atomic test-and-set 
–  memory protection 
–  I/O control operations 
–  interrupts and exceptions 
–  protected modes of execution  

•  kernel vs. user mode 
–  privileged instructions 
–  system calls  

•  Including software interrupts 
–  virtualization architectures 

•  ASPLOS 
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Privileged instructions 

•  Some instructions are restricted to the OS 
–  known as privileged instructions 

•  Only the OS can: 
–  directly access I/O devices (disks, network cards) 

 
–  manipulate memory state management 

•  page table pointers, TLB loads, etc. 
 

–  manipulate special ‘mode bits’ 
•  interrupt priority level 

•  Restrictions provide safety and security  
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OS protection 
•  So how does the processor know if a privileged instruction 

should be executed? 
–  the architecture must support at least two modes of operation: 

kernel mode and user mode 
•   x86 support 4 protection modes 

–  mode is set by status bit in a protected processor register 
•  user programs execute in user mode 
•  OS executes in kernel (privileged) mode   (OS == kernel) 

•  Privileged instructions can only be executed in kernel 
(privileged) mode 
–  if code running in user mode attempts to execute a privileged 

instruction the Illegal excecutin trap 
7 



Crossing protection boundaries 

•  So how do user programs do something privileged? 
–  e.g., how can you write to a disk if you can’t execute an I/O 

instructions? 

•  User programs must call an OS procedure – that is ask  the 
OS to do it for them 
–  OS defines a set of system calls 
–  User-mode program executes system call instruction 

•  Syscall instruction 
–  Like a protected procedure call 
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•  The syscall instruction atomically: 
–  Saves the current PC 
–  Sets the execution mode to privileged 
–  Sets the PC to a handler address 

•  Similar to  a procedure call 
–  Caller puts arguments in a place callee expects (registers or stack) 

•  One of the args is a syscall number, indicating which OS function 
to invoke 

–  Callee (OS) saves caller’s state (registers, other control state) so it 
can use the CPU 

–  OS function code runs 
•  OS must verify caller’s arguments (e.g., pointers) 

–  OS returns using a special instruction 
•  Automatically sets PC to return address and sets execution 

mode to user 
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API – System Call – OS Relationship 



A kernel crossing illustrated 
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user mode 

kernel mode 

Firefox: read(int fileDescriptor, void *buffer, int numBytes) 

Save user PC 
PC = trap handler address 
Enter kernel mode 

Save app state 
Verify syscall number 
Find sys_read( ) handler in vector table 

trap handler 

sys_read( ) kernel routine 
Verify args 
Initiate read 
Choose next process to run 
Setup return values 
Restore app state 

ERET instruction 
http://syscalls.kernelgrok.com/ 

PC = saved PC 
Enter user mode 



Examples of Windows and  Unix System Calls 



System call issues 

•  A syscall is not  subroutine call, with the caller specifying 
the next PC. 
–   the caller knows where the subroutines are located in memory; 

therefore they can be target of attack.  

•  The kernel saves state? 
–  Prevents overwriting  of values 

•  The kernel verify arguments 
–  Prevents buggy code crashing system 

•   Referring to  kernel objects as arguments 
–  Data  copied between user buffer and kernel buffer 
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Exception Handling and Protection 

•  All entries to the OS occur via the mechanism just shown 
–  Acquiring privileged mode and branching to the trap handler are 

inseparable 

•  Terminology: 
–  Interrupt:  asynchronous; caused by an external device 
–  Exception: synchronous; unexpected problem with instruction 
–  Trap: synchronous; intended transition to OS due to an instruction 

•  Privileged instructions and resources are the basis for most 
everything:  memory protection, protected I/O, limiting user 
resource consumption, … 
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OS structure 

•  The OS sits between application programs and the 
hardware 
–  it mediates access and abstracts away ugliness 
–  programs request services via traps or exceptions 
–  devices request attention via interrupts 
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Operating System Design and Implementation 

•  Design and Implementation of OS not “solvable”, but 
some approaches have proven successful

•  Internal structure of different Operating Systems  can 
vary widely

•  Start the design by defining goals and specifications 
•  Affected by choice of hardware, type of system
•  User goals and System goals

–  User goals – operating system should be convenient to use, 
easy to learn, reliable, safe, and fast

–  System goals – operating system should be easy to design, 
implement, and maintain, as well as flexible, reliable, error-free, 
and efficient



Operating System Design and Implementation 

•  Important principle to separate
Policy:   What will be done?  
Mechanism:  How to do it?

•  Mechanisms determine how to do something, policies 
decide what will be done

•  The separation of policy from mechanism is a very 
important principle, it allows maximum flexibility if policy 
decisions are to be changed later (example – timer)

•  Specifying and designing an OS is highly creative task of 
software engineering
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Major OS components 

•  processes 
•  memory 
•  I/O 
•  secondary storage 
•  file systems 
•  protection 
•  shells (command interpreter, or OS UI) 
•  GUI 
•  Networking 
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OS structure 

•  It’s not always clear how to stitch OS modules together: 
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OS structure 

•  An OS consists of all of these components, plus: 
–  many other components 
–  system programs (privileged and non-privileged) 

•  e.g., bootstrap code, the init program, … 

•  Major issue: 
–  how do we organize all this? 
–  what are all of the code modules, and where do they exist? 
–  how do they cooperate? 

•  Massive software engineering and design problem 
–  design a large, complex program that: 

•  performs well, is reliable, is extensible, is backwards compatible,  
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Early structure: Monolithic 

•  Traditionally, OS’s (like UNIX) were built as a monolithic 
entity: 
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Monolithic design 

•  Major advantage: 
–  cost of module interactions is low (procedure call) 

•  Disadvantages: 
–  hard to understand 
–  hard to modify 
–  unreliable (no isolation between system modules) 
–  hard to maintain 

•  What is the alternative? 
–  find a way to organize the OS in order to simplify its design and 

implementation 
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Layering 

•  The traditional approach is layering 
–  implement OS as a set of layers 
–  each layer presents an enhanced ‘virtual machine’ to the layer above 

•  The first description of this approach was Dijkstra’s THE system 
–  Layer 5:  Job Managers 

•  Execute users’ programs 
–  Layer 4:  Device Managers 

•  Handle devices and provide buffering 
–  Layer 3:  Console Manager 

•  Implements virtual consoles 
–  Layer 2: Page Manager 

•  Implements virtual memories for each process 
–  Layer 1: Kernel 

•  Implements a virtual processor for each process 
–  Layer 0: Hardware 

•  Each layer can be tested and verified independently 
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Problems with layering 

•  Imposes hierarchical structure 
–  but real systems are more complex: 

•  file system requires VM services (buffers) 
•  VM would like to use files for its backing store 

–  strict layering isn’t flexible enough 

•  Poor performance 
–  each layer crossing has overhead associated with it 

•  Disjunction between model and reality 
–  systems modeled as layers, but not really built that way 
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Hardware Abstraction Layer 

•  An example of layering in modern 
operating systems 

•  Goal: separates hardware-specific 
routines from the “core” OS 
–  Provides portability 
–  Improves readability 
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Microkernels 

•  Popular in the late 80’s, early 90’s 
–  recent resurgence of popularity  

•  Goal: 
–  minimize what goes in kernel 
–  organize rest of OS as user-level processes 

•  This results in: 
–  better reliability (isolation between components) 
–  ease of extension and customization 
–  poor performance (user/kernel boundary crossings) 

•  First microkernel system was Hydra (CMU, 1970) 
–  Follow-ons: Mach (CMU), Chorus (French UNIX-like OS), OS X 

(Apple), in some ways NT (Microsoft) 
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Microkernel structure illustrated 
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Loadable Kernel Modules 

•  (Perhaps) the best practice for OS design 
•  Core services in the kernel and others dynamically loaded 
•  Common in modern implementations 

–  Solaris, Linux, etc. 
•  Advantages 

–  convenient: no need for rebooting for newly added modules 
–  efficient: no need for message passing unlike microkernel 
–  flexible: any module can call any other module unlike layered model 
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Summary 

•  Fundamental distinction between user and priviliged mode 
supported by most hardware 

•  OS design has been an evolutionary process of trial and 
error. Probably more error than success 

•  Successful OS designs have run the spectrum from 
monolithic, to layered, to micro kernels 

•  The role and design of an OS are still evolving 

•  It is impossible to pick one “correct” way to structure an OS 
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