Operating Systems
Fall 2014

Operating-System Operations

Myungjin Lee
myungjin.lee@ed.ac.uk

Lower-level architecture affects the OS even
more dramatically

* The operating system supports sharing and protection
— multiple applications can run concurrently, sharing resources

— a buggy or malicious application can’t nail other applications or the
system

* There are many approaches to achieving this

* The architecture determines which approaches are viable
(reasonably efficient, or even possible)
— includes instruction set (synchronization, /O, ...)
— also hardware components like MMU or DMA controllers

 Architectural support can vastly simplify (or complicate!) OS
tasks
— e.g.: early PC operating systems (DOS, MacOS) lacked support for

virtual memory, in part because at that time PCs lacked necessary
hardware support

« Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

— Until very recently, Intel-based PCs still lacked support for 64-bit
addressing (which has been available for a decade on other
platforms: MIPS, Alpha, IBM, etc...)

« Changed driven by AMD’s 64-bit architecture

Architectural features affecting OS’s

* These features were built primarily to support OS’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection
— 1/O control operations
— interrupts and exceptions
— protected modes of execution (kernel vs. user)
— privileged instructions
— system calls (and software interrupts)
— virtualization architectures

* Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-
architecture-usage.htm

« AMD: http://sites.amd.com/us/business/it-solutions/usage-models/
virtualization/Pages/amd-v.aspx

Privileged instructions

« Some instructions are restricted to the OS
— known as privileged instructions

* e.g., only the OS can:

— directly access /O devices (disks, network cards)
* why?

— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?

— manipulate special ‘mode bits’
* interrupt priority level
« why?

OS protection

« So how does the processor know if a privileged instruction
should be executed?

— the architecture must support at least two modes of operation:
kernel mode and user mode

* VAX, x86 support 4 protection modes
— mode is set by status bit in a protected processor register
e user programs execute in user mode
* OS executes in kernel (privileged) mode (OS == kernel)

* Privileged instructions can only be executed in kernel
(privileged) mode

— what happens if code running in user mode attempts to execute a
privileged instruction?

Crossing protection boundaries

* So how do user programs do something privileged?

— e.g., how can you write to a disk if you can’t execute an I/O
instructions?

« User programs must call an OS procedure — that is, get the
OS to do it for them

— OS defines a set of system calls
— User-mode program executes system call instruction

« Syscall instruction
— Like a protected procedure call

The syscall instruction atomically:
— Saves the current PC
— Sets the execution mode to privileged
— Sets the PC to a handler address

With that, it's a lot like a local procedure call
— Caller puts arguments in a place callee expects (registers or stack)

* One of the args is a syscall number, indicating which OS function
to invoke

— Callee (OS) saves caller’s state (registers, other control state) so it
can use the CPU

— OS function code runs
« OS must verify caller’s arguments (e.g., pointers)
— OS returns using a special instruction

« Automatically sets PC to return address and sets execution
mode to user

A kernel crossing illustrated

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC

PC = trap handler address

Enter kernel mode
user mode

kernel mode v
trap handler

PC = saved PC

Enter user mode
Save app state

Verify syscall number
Find sys_read() handler in vector table

v

sys_read() kernel routine

Verify args

Initiate read
Choose next process to run
Setup return values
v Restore state

ERET instruction

http://syscalls.kernelgrok.com/

System call issues

What would be wrong if a syscall worked like a regular
subroutine call, with the caller specifying the next PC?

What would happen if kernel didn’t save state?
Why must the kernel verify arguments?

How can you reference kernel objects as arguments to or
results from system calls?

Exception Handling and Protection

All entries to the OS occur via the mechanism just shown
— Acquiring privileged mode and branching to the trap handler are
inseparable
Terminology:
— Interrupt: asynchronous; caused by an external device
— Exception: synchronous; unexpected problem with instruction
— Trap: synchronous; intended transition to OS due to an instruction

Privileged instructions and resources are the basis for most

everything: memory protection, protected 1/O, limiting user
resource consumption, ...

Memory protection

« OS must protect user programs from each other
— maliciousness, ineptitude

* OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

« Simplest scheme: base and limit registers
— are these protected?

Prog A

= base reg base and limit registers
ProgB | | limitreg are loaded by OS before
starting program

Prog C

More sophisticated memory protection

« coming later in the course

e paging, segmentation, virtual memory
— page tables, page table pointers
— translation lookaside buffers (TLBs)
— page fault handling

/O control

* Issues:

— how does the OS start an 1/0?
 special I/O instructions
* memory-mapped I/O

— how does the OS notice an I/O has finished?
* polling
* Interrupts

— how does the OS exchange data with an 1/O device?
* Programmed I/O (PIO)
« Direct Memory Access (DMA)

Asynchronous |/O

 Interrupts are the basis for asynchronous 1/O
— device performs an operation asynchronously to CPU
— device sends an interrupt signal on bus when done

— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types

« who populates the vector table, and when?
— CPU switches to address indicated by vector index specified by
Interrupt signal

« What's the advantage of asynchronous |/O?

Timers

 How can the OS prevent runaway user programs from
hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt
— before it transfers to a user program, the OS loads the timer with a
time to interrupt
« “gquantum” — how big should it be set?
— when timer fires, an interrupt transfers control back to OS
 at which point OS must decide which program to schedule next
* very interesting policy question: we’'ll dedicate a class to it

* Should access to the timer be privileged?
— for reading or for writing?

Synchronization

* Interrupts cause a wrinkle:

— may occur any time, causing code to execute that interferes with
code that was interrupted

— OS must be able to synchronize concurrent processes

* Synchronization:

— guarantee that short instruction sequences (e.g., read-modify-write)
execute atomically

— one method: turn off interrupts before the sequence, execute it, then
re-enable interrupts

« architecture must support disabling interrupts
— Privileged???
— another method: have special complex atomic instructions
* read-modify-write
 test-and-set
* load-linked store-conditional

“Concurrent programming’

« Management of concurrency and asynchronous events is
biggest difference between “systems programming” and
“traditional application programming”

— modern “event-oriented” application programming is a middle

ground
— And in a multi-core world, more and more apps have internal

concurrency

 Arises from the architecture
— Can be sugar-coated, but cannot be totally abstracted away

* Huge intellectual challenge
— Unlike vulnerabilities due to buffer overruns, which are just sloppy

programming

Some questions

Why wouldn’t you want a user program to be able to access
an 1/O device (e.qg., the disk) directly?

OK, so what keeps this from happening? What prevents
user programs from directly accessing the disk?

S0, how does a user program cause disk 1/O to occur?

What prevents a user program from scribbling on the
memory of another user program??

What prevents a user program from scribbling on the
memory of the operating system?

What prevents a user program from running away with the
CPU?

