
Operating Systems
Fall 2014

Operating-System Operations

Myungjin Lee
myungjin.lee@ed.ac.uk

1

Lower-level architecture affects the OS even
more dramatically

•  The operating system supports sharing and protection
–  multiple applications can run concurrently, sharing resources
–  a buggy or malicious application can’t nail other applications or the

system

•  There are many approaches to achieving this

•  The architecture determines which approaches are viable
(reasonably efficient, or even possible)
–  includes instruction set (synchronization, I/O, …)
–  also hardware components like MMU or DMA controllers

2

•  Architectural support can vastly simplify (or complicate!) OS
tasks
–  e.g.: early PC operating systems (DOS, MacOS) lacked support for

virtual memory, in part because at that time PCs lacked necessary
hardware support

•  Apollo workstation used two CPUs as a bandaid for non-
restartable instructions!

–  Until very recently, Intel-based PCs still lacked support for 64-bit
addressing (which has been available for a decade on other
platforms: MIPS, Alpha, IBM, etc…)

•  Changed driven by AMD’s 64-bit architecture

3

Architectural features affecting OS’s

•  These features were built primarily to support OS’s:
–  timer (clock) operation
–  synchronization instructions (e.g., atomic test-and-set)
–  memory protection
–  I/O control operations
–  interrupts and exceptions
–  protected modes of execution (kernel vs. user)
–  privileged instructions
–  system calls (and software interrupts)
–  virtualization architectures

•  Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-
architecture-usage.htm

•  AMD: http://sites.amd.com/us/business/it-solutions/usage-models/
virtualization/Pages/amd-v.aspx

4

Privileged instructions

•  Some instructions are restricted to the OS
–  known as privileged instructions

•  e.g., only the OS can:
–  directly access I/O devices (disks, network cards)

•  why?
–  manipulate memory state management

•  page table pointers, TLB loads, etc.
•  why?

–  manipulate special ‘mode bits’
•  interrupt priority level
•  why?

5

OS protection

•  So how does the processor know if a privileged instruction
should be executed?
–  the architecture must support at least two modes of operation:

kernel mode and user mode
•  VAX, x86 support 4 protection modes

–  mode is set by status bit in a protected processor register
•  user programs execute in user mode
•  OS executes in kernel (privileged) mode (OS == kernel)

•  Privileged instructions can only be executed in kernel
(privileged) mode
–  what happens if code running in user mode attempts to execute a

privileged instruction?

6

Crossing protection boundaries

•  So how do user programs do something privileged?
–  e.g., how can you write to a disk if you can’t execute an I/O

instructions?

•  User programs must call an OS procedure – that is, get the
OS to do it for them
–  OS defines a set of system calls
–  User-mode program executes system call instruction

•  Syscall instruction
–  Like a protected procedure call

7

•  The syscall instruction atomically:
–  Saves the current PC
–  Sets the execution mode to privileged
–  Sets the PC to a handler address

•  With that, it’s a lot like a local procedure call
–  Caller puts arguments in a place callee expects (registers or stack)

•  One of the args is a syscall number, indicating which OS function
to invoke

–  Callee (OS) saves caller’s state (registers, other control state) so it
can use the CPU

–  OS function code runs
•  OS must verify caller’s arguments (e.g., pointers)

–  OS returns using a special instruction
•  Automatically sets PC to return address and sets execution

mode to user

8

A kernel crossing illustrated

9

user mode

kernel mode

Firefox: read(int fileDescriptor, void *buffer, int numBytes)

Save user PC
PC = trap handler address
Enter kernel mode

Save app state
Verify syscall number
Find sys_read() handler in vector table

trap handler

sys_read() kernel routine
Verify args
Initiate read
Choose next process to run
Setup return values
Restore app state

ERET instruction
http://syscalls.kernelgrok.com/

PC = saved PC
Enter user mode

System call issues

•  What would be wrong if a syscall worked like a regular
subroutine call, with the caller specifying the next PC?

•  What would happen if kernel didn’t save state?
•  Why must the kernel verify arguments?
•  How can you reference kernel objects as arguments to or

results from system calls?

10

Exception Handling and Protection

•  All entries to the OS occur via the mechanism just shown
–  Acquiring privileged mode and branching to the trap handler are

inseparable

•  Terminology:
–  Interrupt: asynchronous; caused by an external device
–  Exception: synchronous; unexpected problem with instruction
–  Trap: synchronous; intended transition to OS due to an instruction

•  Privileged instructions and resources are the basis for most
everything: memory protection, protected I/O, limiting user
resource consumption, …

11

Memory protection

•  OS must protect user programs from each other
–  maliciousness, ineptitude

•  OS must also protect itself from user programs
–  integrity and security
–  what about protecting user programs from OS?

•  Simplest scheme: base and limit registers
–  are these protected?

12

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

More sophisticated memory protection

•  coming later in the course
•  paging, segmentation, virtual memory

–  page tables, page table pointers
–  translation lookaside buffers (TLBs)
–  page fault handling

13

I/O control

•  Issues:
–  how does the OS start an I/O?

•  special I/O instructions
•  memory-mapped I/O

–  how does the OS notice an I/O has finished?
•  polling
•  Interrupts

–  how does the OS exchange data with an I/O device?
•  Programmed I/O (PIO)
•  Direct Memory Access (DMA)

14

Asynchronous I/O

•  Interrupts are the basis for asynchronous I/O
–  device performs an operation asynchronously to CPU
–  device sends an interrupt signal on bus when done
–  in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
•  who populates the vector table, and when?

–  CPU switches to address indicated by vector index specified by
interrupt signal

•  What’s the advantage of asynchronous I/O?

15

Timers

•  How can the OS prevent runaway user programs from
hogging the CPU (infinite loops?)
–  use a hardware timer that generates a periodic interrupt
–  before it transfers to a user program, the OS loads the timer with a

time to interrupt
•  “quantum” – how big should it be set?

–  when timer fires, an interrupt transfers control back to OS
•  at which point OS must decide which program to schedule next
•  very interesting policy question: we’ll dedicate a class to it

•  Should access to the timer be privileged?
–  for reading or for writing?

16

Synchronization

•  Interrupts cause a wrinkle:
–  may occur any time, causing code to execute that interferes with

code that was interrupted
–  OS must be able to synchronize concurrent processes

•  Synchronization:
–  guarantee that short instruction sequences (e.g., read-modify-write)

execute atomically
–  one method: turn off interrupts before the sequence, execute it, then

re-enable interrupts
•  architecture must support disabling interrupts

–  Privileged???
–  another method: have special complex atomic instructions

•  read-modify-write
•  test-and-set
•  load-linked store-conditional

17

“Concurrent programming”

•  Management of concurrency and asynchronous events is
biggest difference between “systems programming” and
“traditional application programming”
–  modern “event-oriented” application programming is a middle

ground
–  And in a multi-core world, more and more apps have internal

concurrency

•  Arises from the architecture
–  Can be sugar-coated, but cannot be totally abstracted away

•  Huge intellectual challenge
–  Unlike vulnerabilities due to buffer overruns, which are just sloppy

programming

18

Some questions

•  Why wouldn’t you want a user program to be able to access
an I/O device (e.g., the disk) directly?

•  OK, so what keeps this from happening? What prevents
user programs from directly accessing the disk?

•  So, how does a user program cause disk I/O to occur?
•  What prevents a user program from scribbling on the

memory of another user program?
•  What prevents a user program from scribbling on the

memory of the operating system?
•  What prevents a user program from running away with the

CPU?

19

