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Lower-level architecture affects the OS even 
more dramatically 

•  The operating system supports sharing and protection 
–  multiple applications can run concurrently, sharing resources 
–  a buggy or malicious application can’t nail other applications or the 

system 

•  There are many approaches to achieving this 

•  The architecture determines which approaches are viable 
(reasonably efficient, or even possible) 
–  includes instruction set  (synchronization, I/O, …) 
–  also hardware components like MMU or DMA controllers 
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•  Architectural support can vastly simplify (or complicate!) OS 
tasks 
–  e.g.: early PC operating systems (DOS, MacOS) lacked support for 

virtual memory, in part because at that time PCs lacked necessary 
hardware support 

•  Apollo workstation used two CPUs as a bandaid for non-
restartable instructions! 

–  Until very recently, Intel-based PCs still lacked support for 64-bit 
addressing (which has been available for a decade on other 
platforms:  MIPS, Alpha, IBM, etc…) 

•  Changed driven by AMD’s 64-bit architecture 
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Architectural features affecting OS’s 

•  These features were built primarily to support OS’s: 
–  timer (clock) operation 
–  synchronization instructions (e.g., atomic test-and-set) 
–  memory protection 
–  I/O control operations 
–  interrupts and exceptions 
–  protected modes of execution (kernel vs. user) 
–  privileged instructions 
–  system calls (and software interrupts) 
–  virtualization architectures 

•  Intel: http://www.intel.com/technology/itj/2006/v10i3/1-hardware/7-
architecture-usage.htm 

•  AMD: http://sites.amd.com/us/business/it-solutions/usage-models/
virtualization/Pages/amd-v.aspx 
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Privileged instructions 

•  Some instructions are restricted to the OS 
–  known as privileged instructions 

•  e.g., only the OS can: 
–  directly access I/O devices (disks, network cards) 

•  why? 
–  manipulate memory state management 

•  page table pointers, TLB loads, etc. 
•  why? 

–  manipulate special ‘mode bits’ 
•  interrupt priority level 
•  why? 
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OS protection 

•  So how does the processor know if a privileged instruction 
should be executed? 
–  the architecture must support at least two modes of operation: 

kernel mode and user mode 
•  VAX, x86 support 4 protection modes 

–  mode is set by status bit in a protected processor register 
•  user programs execute in user mode 
•  OS executes in kernel (privileged) mode   (OS == kernel) 

•  Privileged instructions can only be executed in kernel 
(privileged) mode 
–  what happens if code running in user mode attempts to execute a 

privileged instruction? 
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Crossing protection boundaries 

•  So how do user programs do something privileged? 
–  e.g., how can you write to a disk if you can’t execute an I/O 

instructions? 

•  User programs must call an OS procedure – that is, get the 
OS to do it for them 
–  OS defines a set of system calls 
–  User-mode program executes system call instruction 

•  Syscall instruction 
–  Like a protected procedure call 
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•  The syscall instruction atomically: 
–  Saves the current PC 
–  Sets the execution mode to privileged 
–  Sets the PC to a handler address 

•  With that, it’s a lot like a local procedure call 
–  Caller puts arguments in a place callee expects (registers or stack) 

•  One of the args is a syscall number, indicating which OS function 
to invoke 

–  Callee (OS) saves caller’s state (registers, other control state) so it 
can use the CPU 

–  OS function code runs 
•  OS must verify caller’s arguments (e.g., pointers) 

–  OS returns using a special instruction 
•  Automatically sets PC to return address and sets execution 

mode to user 
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A kernel crossing illustrated 

9 

user mode 

kernel mode 

Firefox: read(int fileDescriptor, void *buffer, int numBytes) 

Save user PC 
PC = trap handler address 
Enter kernel mode 

Save app state 
Verify syscall number 
Find sys_read( ) handler in vector table 

trap handler 

sys_read( ) kernel routine 
Verify args 
Initiate read 
Choose next process to run 
Setup return values 
Restore app state 

ERET instruction 
http://syscalls.kernelgrok.com/ 

PC = saved PC 
Enter user mode 



System call issues 

•  What would be wrong if a syscall worked like a regular 
subroutine call, with the caller specifying the next PC? 

•  What would happen if kernel didn’t save state? 
•  Why must the kernel verify arguments? 
•  How can you reference kernel objects as arguments to or 

results from system calls? 
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Exception Handling and Protection 

•  All entries to the OS occur via the mechanism just shown 
–  Acquiring privileged mode and branching to the trap handler are 

inseparable 

•  Terminology: 
–  Interrupt:  asynchronous; caused by an external device 
–  Exception: synchronous; unexpected problem with instruction 
–  Trap: synchronous; intended transition to OS due to an instruction 

•  Privileged instructions and resources are the basis for most 
everything:  memory protection, protected I/O, limiting user 
resource consumption, … 
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Memory protection 

•  OS must protect user programs from each other 
–  maliciousness, ineptitude 

•  OS must also protect itself from user programs 
–  integrity and security 
–  what about protecting user programs from OS? 

•  Simplest scheme: base and limit registers 
–  are these protected? 
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Prog A 

Prog B 

Prog C 

base reg 
limit reg 

base and limit registers 
are loaded by OS before 

starting program 



More sophisticated memory protection 

•  coming later in the course 
•  paging, segmentation, virtual memory 

–  page tables, page table pointers 
–  translation lookaside buffers (TLBs) 
–  page fault handling 
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I/O control 

•  Issues: 
–  how does the OS start an I/O? 

•  special I/O instructions 
•  memory-mapped I/O 

–  how does the OS notice an I/O has finished? 
•  polling 
•  Interrupts 

–  how does the OS exchange data with an I/O device? 
•  Programmed I/O (PIO) 
•  Direct Memory Access (DMA) 
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Asynchronous I/O 

•  Interrupts are the basis for asynchronous I/O 
–  device performs an operation asynchronously to CPU 
–  device sends an interrupt signal on bus when done 
–  in memory, a vector table contains list of addresses of kernel 

routines to handle various interrupt types 
•  who populates the vector table, and when? 

–  CPU switches to address indicated by vector index specified by 
interrupt signal 

•  What’s the advantage of asynchronous I/O? 
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Timers 

•  How can the OS prevent runaway user programs from 
hogging the CPU (infinite loops?) 
–  use a hardware timer that generates a periodic interrupt 
–  before it transfers to a user program, the OS loads the timer with a 

time to interrupt 
•  “quantum” – how big should it be set? 

–  when timer fires, an interrupt transfers control back to OS 
•  at which point OS must decide which program to schedule next 
•  very interesting policy question: we’ll dedicate a class to it 

•  Should access to the timer be privileged? 
–  for reading or for writing? 
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Synchronization 

•  Interrupts cause a wrinkle: 
–  may occur any time, causing code to execute that interferes with 

code that was interrupted 
–  OS must be able to synchronize concurrent processes 

•  Synchronization: 
–  guarantee that short instruction sequences (e.g., read-modify-write) 

execute atomically 
–  one method: turn off interrupts before the sequence, execute it, then 

re-enable interrupts 
•  architecture must support disabling interrupts 

–  Privileged??? 
–  another method:  have special complex atomic instructions 

•  read-modify-write 
•  test-and-set 
•  load-linked store-conditional 
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“Concurrent programming” 

•  Management of concurrency and asynchronous events is 
biggest difference between “systems programming” and 
“traditional application programming” 
–  modern “event-oriented” application programming is a middle 

ground 
–  And in a multi-core world, more and more apps have internal 

concurrency 

•  Arises from the architecture 
–  Can be sugar-coated, but cannot be totally abstracted away 

•  Huge intellectual challenge 
–  Unlike vulnerabilities due to buffer overruns, which are just sloppy 

programming 

18 



Some questions 

•  Why wouldn’t you want a user program to be able to access 
an I/O device (e.g., the disk) directly? 

•  OK, so what keeps this from happening?  What prevents 
user programs from directly accessing the disk? 

•  So, how does a user program cause disk I/O to occur? 
•  What prevents a user program from scribbling on the 

memory of another user program? 
•  What prevents a user program from scribbling on the 

memory of the operating system? 
•  What prevents a user program from running away with the 

CPU? 
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