
Operating Systems  
 2019  
 

Introduction 

Michael O’Boyle
mob@inf.ed.ac.uk

1

mailto:myungjin.lee@ed.ac.uk

Overview

• Introduction
• Definition of an operating system

– Hard to pin down
• Historical look
• Key functions

– Timesharing
– Multitasking

• Various types of OS
– Depends on platform and scenario

2

Computing systems are everywhere

3

Modern computer system

4

Disk
controller USB controller Graphics

adapterCPU

Memory

System Bus

Memory
controller

Four Components of a Computer System

What is an Operating System?

• A big program
– Linux kernel has 20M lines of code

• A program that
– manages a computer’s hardware

• A program that
– acts an intermediary between the user of a computer and computer

hardware

6

Operating System Definition

• OS is a resource allocator
– Manages all resources
– Decides between conflicting requests for efficient

and fair resource use
• OS is a control program

– Controls execution of programs to prevent errors
and improper use of the computer

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is a good approximation
– But varies wildly

• “The one program running at all times on the computer”
is the kernel.
– Not the case in bare-metal embedded systems

• Everything else is either
– a system program (ships with the operating system) , or
– an application program.

Some goals of operating systems

• Simplify the execution of user programs and make solving
user problems easier

• Use computer hardware efficiently
– Allow sharing of hardware and software resources

• Make application software portable and versatile
• Provide isolation, security and protection among user

programs
• Improve overall system reliability

– error confinement, fault tolerance, reconfiguration

9

The traditional Picture

• “The OS is everything you don’t need to write in order to run
your application”
• This depiction invites you to think of the OS as a library; we’ll see that

– In some ways, it is:
• all operations on I/O devices require OS calls (syscalls)

– In other ways, it isn't:
• you use the CPU/memory without OS calls
• it intervenes without having been explicitly called

10

Applications

OS

Hardware

The OS and Hardware

• An OS mediates programs’ access to hardware resources
(sharing and protection)
– computation (CPU)
– volatile storage (memory) and persistent storage (disk, etc.)
– network communications (TCP/IP stacks, Ethernet cards, etc.)
– input/output devices (keyboard, display, sound card, etc.)

• The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use)
– processes (CPU, memory)
– files (disk)
– programs (sequences of instructions)
– sockets (network)

11

Why Bother with an OS?

• Application benefits
– programming simplicity

• see high-level abstractions (files) instead of low-level hardware details
(device registers)

• abstractions are reusable across many programs
– portability (across machine configurations or architectures)

• device independence: 3com card or Intel card?
• User benefits

– safety
• program “sees” its own virtual machine, thinks it “owns” the computer
• OS protects programs from each other
• OS fairly multiplexes resources across programs

– efficiency (cost and speed)
• share one computer across many users
• concurrent execution of multiple programs

12

Hardware/Software Changes with Time

13

Hardware Complexity Increases

14

Moore’s Law: 2X transistors/
Chip Every 1.5 years

Software Complexity Increases

15Source: http://bit.ly/KIB_linescode

Hardware/Software Changes with Time

• 1960s: mainframe computers (IBM)
• 1970s: minicomputers (DEC)
• 1980s: microprocessors and workstations (SUN), local-area

networking, the Internet
• 1990s: PCs (rise of Microsoft, Intel, Dell), the Web
• 2000s:

– Internet Services / Clusters (Amazon)
– General Cloud Computing (Google, Amazon, Microsoft)
– Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad,

Android)
• 2010s: sensor networks, “data-intensive computing,”

computers and the physical world
• 2020: exascale, IoT ??

16

Progression of Concepts and Form Factors

17

An OS History Lesson

• Operating systems are the result of a 60 year long
evolutionary process
– They were born out of need

• Examine their evolution

• Explains what some of their functions are, and why

18

Early days

• 1943
– T.J. Watson (created IBM): 

 “ I think there is a world market for maybe five
 computers.”

• Fast forward … 1950
– There are maybe 20 computers in the world

• They were unbelievably expensive
• Machine time is considerably more valuable than person time!
• Ergo: efficient use of the hardware is paramount

– Operating systems are born
• They carry with them the vestiges of these economic

assumptions

19

Simplified early computer

20

CPUDisk

Memory

Printer

Input Device

The OS as a linked library

• In the very beginning…
– OS was just a library of code that you linked into your program;

programs were loaded in their entirety into memory, and executed
• “OS” had an “API” that let you control the disk, control the printer,

etc.
– Interfaces were literally switches and blinking lights
– When you were done running your program, you’d leave and turn the

computer over to the next person
• Not so very different from some embedded devices today

21

Asynchronous I/O

• The disk was really slow
• Add hardware so that the disk could operate without tying up

the CPU
– Disk controller

• Programmers could now write code that:
– Starts an I/O
– Goes off and does some computing
– Checks if the I/O is done at some later time

• Upside
– Helps increase (expensive) CPU utilization

• Downsides
– It's hard to get right
– The benefits are job specific

22

23

IBM 1401

Multiprogramming

• To further increase system utilization, multiprogramming
OSs were invented
– keeps multiple runnable jobs loaded in memory at once
– overlaps I/O of one job with computing of another

• while one job waits for I/O completion, another job uses the CPU
• Can get rid of asynchronous I/O within individual jobs

• Life of application programmer becomes simpler; only the OS
programmer needs to deal with asynchronous events

• How do we tell when devices are done?
• Interrupts
• Polling

• What new requirements does this impose?

24

25

IBM System 360

Timesharing

• To support interactive use, create a timesharing OS:
– multiple terminals into one machine
– each user has illusion of entire machine to him/herself
– optimize response time, perhaps at the cost of throughput

• Timeslicing
– divide CPU equally among the users
– if job is truly interactive (e.g., editor), then can jump between

programs and users faster than users can generate work
– permits users to interactively view, edit, debug running programs

• Multics system (operational 1968) was the first large
timeshared system
– nearly all OS concepts can be traced back to Multics

26

Parallel Systems

• Some applications can be written as multiple parallel threads or
processes
– can speed up the execution by running multiple threads/processes

simultaneously on multiple CPUs [Burroughs D825, 1962]
– need OS and language primitives for dividing program into multiple parallel

activities
– need OS primitives for fast communication among activities

• degree of speedup dictated by communication/computation ratio
• Many flavors of parallel computers today

• Multi-cores – all(ish) processors are parallel
• SMPs (symmetric multi-processors)
• MPPs (massively parallel processors)
• NOWs (networks of workstations) –less common
• Massive clusters (Google, Amazon.com, Microsoft)
• Heterogeneous accelerators eg GPUs

27

Personal Computing

• Primary goal was to enable new kinds of applications
• Bit mapped display [Xerox Alto,1973]

– new classes of applications
– new input device (the mouse)

• Move computing near the display
– why?

• Window systems
– the display as a managed resource

• Local area networks [Ethernet]
– why?

• Effect on OS?

28

Distributed OS

• Distributed systems to facilitate use of geographically
distributed resources
– workstations on a LAN
– servers across the Internet

• Supports communications between programs
– interprocess communication

• message passing, shared memory
– networking stacks

• Sharing of distributed resources (hardware, software)
– load balancing, authentication and access control, …

• Speedup isn’t the issue
– access to diversity of resources is goal

29

Client/Server Computing

• Dumb terminals supplanted by smart PCs
– Many systems now servers, responding to requests generated by clients

• Compute-server system
– provides an interface to client to request services (i.e., database)

• File-server system
– provides interface for clients to store and retrieve files

• Mail server/service
• Print server/service
• Game server/service
• Music server/service
• Web server/service
• etc.

30

Peer-to-Peer (p2p) Systems

• Another model of distributed system
• Does not distinguish clients and servers

– All nodes are considered peers
• Each may act as client or server

• Node must join P2P network
– Registers its service with central lookup service on network, or
– Broadcast request for service and respond to requests for service via

discovery protocol
• Examples include Napster and Gnutella, Voice over IP

(VoIP) such as Skype

31

Virtualization

32

Applications

OS

Hardware

Virtual Machine Manager

(Hypervisor)

Hardware

VM2

Applications

OS

VM1

Applications

OS

Programming
Interface

Cloud Computing

33

Cloud
Customer
interface

Virtual
machines

Servers Servers

Virtual
machines Storage

Cloud
Management

services

Internet

Firewall

Load Balancer Cloud
management
commands

Customer
requests

• Amazon EC2
• Microsoft Azure
• HP Helion Public Cloud

© 2012 Gribble, Lazowska, Levy, Zahorjan 34

The major OS issues

• structure: how is the OS organized?
• sharing: how are resources shared across users?
• naming: how are resources named (by users or programs)?
• security: how is the integrity of the OS and its resources ensured?
• protection: how is one user/program protected from another?
• performance: how do we make it all go fast?
• reliability: what happens if something goes wrong (either with hardware

or with a program)?
• extensibility: can we add new features?
• communication: how do programs exchange information, including

across a network?

© 2012 Gribble, Lazowska, Levy, Zahorjan 35

More OS issues…

• concurrency: how are parallel activities (computation and I/O)
created and controlled?

• scale: what happens as demands or resources increase?
• persistence: how do you make data last longer than program

executions?
• distribution: how do multiple computers interact with each

other?
• accounting: how do we keep track of resource usage, and

perhaps charge for it?

There are tradeoffs, solution depends on scenario

Summary

• Introduction
• Definition of an operating system

– Hard to pin down
• Historical look
• Key functions

– Timesharing
– Multitasking

• Various types of OS
– Depends on platform and scenario

• Next lecture: structure and organisation

36

