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Overview

• Introduction  
• Definition of an operating system 

– Hard to pin down 
• Historical look  
• Key functions  

– Timesharing  
– Multitasking 

• Various types of OS 
– Depends on platform and scenario
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Computing systems are everywhere
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Modern computer system
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Four Components of a Computer System



What is an Operating System?

• A big program 
– Linux kernel  has 20M lines of code 

• A program that  
– manages a computer’s hardware 

• A program that 
–  acts an intermediary between the user of a computer and computer 

hardware
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Operating System Definition

• OS is a resource allocator
– Manages all resources
– Decides between conflicting requests for efficient 

and fair resource use
• OS is a control program

– Controls execution of programs to prevent errors 
and improper use of the computer



Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an 

operating system” is a good approximation
– But varies wildly

• “The one program running at all times on the computer” 
is the kernel.  
– Not the case in bare-metal embedded systems

• Everything else is either
– a system program (ships with the operating system) , or
– an application program.



Some goals of operating systems

• Simplify the execution of user programs and make solving 
user problems easier 

• Use computer hardware efficiently 
– Allow sharing of hardware and software resources 

• Make application software portable and versatile 
• Provide isolation, security and protection among user 

programs 
• Improve overall system reliability 

– error confinement, fault tolerance, reconfiguration
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The traditional Picture

• “The OS is everything you don’t need to write in order to run 
your application” 
• This depiction invites you to think of the OS as a library; we’ll see that 

– In some ways, it is: 
• all operations on I/O devices require OS calls (syscalls) 

– In other ways, it isn't: 
• you use the CPU/memory without OS calls 
• it intervenes without having been explicitly called
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The OS and Hardware

• An OS mediates programs’ access to hardware resources 
(sharing and protection) 
– computation (CPU) 
– volatile storage (memory) and persistent storage (disk, etc.) 
– network communications (TCP/IP stacks, Ethernet cards, etc.) 
– input/output devices (keyboard, display, sound card, etc.) 

• The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use) 
– processes (CPU, memory) 
– files (disk) 
– programs (sequences of instructions) 
– sockets (network)

11



Why Bother with an OS?

• Application benefits 
– programming simplicity 

• see high-level abstractions (files) instead of low-level hardware details 
(device registers) 

• abstractions are reusable across many programs 
– portability (across machine configurations or architectures) 

• device independence: 3com card or Intel card? 
• User benefits 

– safety 
• program “sees” its own virtual machine, thinks it “owns” the computer 
• OS protects programs from each other 
• OS fairly multiplexes resources across programs 

– efficiency (cost and speed) 
• share one computer across many users 
• concurrent execution of multiple programs

12



Hardware/Software Changes with Time
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Hardware Complexity Increases
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Software Complexity Increases
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Hardware/Software Changes with Time

• 1960s:  mainframe computers (IBM)  
• 1970s:  minicomputers (DEC)  
• 1980s:  microprocessors and workstations (SUN), local-area 

networking, the Internet 
• 1990s:  PCs (rise of Microsoft, Intel, Dell), the Web 
• 2000s: 

– Internet Services / Clusters (Amazon) 
– General Cloud Computing (Google, Amazon, Microsoft) 
– Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad, 

Android) 
• 2010s:  sensor networks, “data-intensive computing,” 

computers and the physical world 
• 2020:  exascale, IoT ??
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Progression of Concepts and Form Factors
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An OS History Lesson

• Operating systems are the result of a 60 year long 
evolutionary process 
– They were born out of need 

• Examine their evolution 

• Explains what some of their functions are, and why
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Early days 

• 1943 
– T.J. Watson (created IBM): 

  “ I think there is a world market for maybe five 
  computers.” 

• Fast forward … 1950 
– There are maybe 20 computers in the world 

• They were unbelievably expensive 
• Machine time is considerably more valuable than person time! 
• Ergo: efficient use of the hardware is paramount 

– Operating systems are born 
• They carry with them the vestiges of these economic 

assumptions 
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Simplified early computer
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The OS as a linked library

• In the very beginning… 
– OS was just a library of code that you linked into your program; 

programs were loaded in their entirety into memory, and executed 
• “OS” had an “API” that let you control the disk, control the printer, 

etc. 
– Interfaces were literally switches and blinking lights 
– When you were done running your program, you’d leave and turn the 

computer over to the next person 
• Not so very different from some embedded devices today

21



Asynchronous I/O

• The disk was really slow 
• Add hardware so that the disk could operate without tying up 

the CPU 
– Disk controller 

• Programmers could now write code that: 
– Starts an I/O 
– Goes off and does some computing 
– Checks if the I/O is done at some later time 

• Upside 
– Helps increase (expensive) CPU utilization 

• Downsides 
– It's hard to get right 
– The benefits are job specific
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Multiprogramming

• To further increase system utilization, multiprogramming 
OSs were invented 
– keeps multiple runnable jobs loaded in memory at once 
– overlaps I/O of one job with computing of another 

• while one job waits for I/O completion, another job uses the CPU 
• Can get rid of asynchronous I/O within individual jobs 

• Life of application programmer becomes simpler; only the OS 
programmer needs to deal with asynchronous events 

• How do we tell when devices are done? 
• Interrupts 
• Polling 

• What new requirements does this impose?
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Timesharing

• To support interactive use, create a timesharing OS: 
– multiple terminals into one machine 
– each user has illusion of entire machine to him/herself 
– optimize response time, perhaps at the cost of throughput 

• Timeslicing 
– divide CPU equally among the users 
– if job is truly interactive (e.g., editor), then can jump between 

programs and users faster than users can generate  work 
– permits users to interactively view, edit, debug running programs 

• Multics system (operational 1968) was the first large 
timeshared system 
– nearly all OS concepts can be traced back to Multics
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Parallel Systems

• Some applications can be written as multiple parallel threads or 
processes 
– can speed up the execution by running multiple threads/processes 

simultaneously on multiple CPUs [Burroughs D825, 1962] 
– need OS and language primitives for dividing program into multiple parallel 

activities 
– need OS primitives for fast communication among activities 

• degree of speedup dictated by communication/computation ratio 
• Many flavors of parallel computers today 

• Multi-cores – all(ish)  processors are parallel 
• SMPs  (symmetric multi-processors) 
• MPPs (massively parallel processors) 
• NOWs (networks of workstations) –less common 
• Massive clusters (Google, Amazon.com, Microsoft) 
• Heterogeneous accelerators eg GPUs
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Personal Computing

• Primary goal was to enable new kinds of applications 
• Bit mapped display [Xerox Alto,1973] 

– new classes of applications 
– new input device (the mouse) 

• Move computing near the display 
– why? 

• Window systems 
– the display as a managed resource 

• Local area networks [Ethernet] 
– why? 

• Effect on OS?
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Distributed OS

• Distributed systems to facilitate use of geographically 
distributed resources 
– workstations on a LAN 
– servers across the Internet 

• Supports communications between programs 
– interprocess communication 

• message passing, shared memory 
– networking stacks 

• Sharing of distributed resources (hardware, software) 
– load balancing, authentication and access control, … 

• Speedup isn’t the issue 
– access to diversity of resources is goal
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Client/Server Computing

• Dumb terminals supplanted by smart PCs 
– Many systems now servers, responding to requests generated by clients 

• Compute-server system  
– provides an interface to client to request services (i.e., database) 

• File-server system  
– provides interface for clients to store and retrieve files 

• Mail server/service 
• Print server/service 
• Game server/service 
• Music server/service 
• Web server/service 
• etc.

30



Peer-to-Peer (p2p) Systems

• Another model of distributed system
• Does not distinguish clients and servers

– All nodes are considered peers
• Each may act as client or server 

• Node must join P2P network
– Registers its service with central lookup service on network, or
– Broadcast request for service and respond to requests for service via 

discovery protocol
• Examples include Napster and Gnutella, Voice over IP 

(VoIP) such as Skype 
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Virtualization
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Cloud Computing
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The major OS issues

• structure: how is the OS organized? 
• sharing: how are resources shared across users? 
• naming: how are resources named (by users or programs)? 
• security: how is the integrity of the OS and its resources ensured? 
• protection: how is one user/program protected from another? 
• performance: how do we make it all go fast? 
• reliability: what happens if something goes wrong (either with hardware 

or with a program)? 
• extensibility: can we add new features? 
• communication: how do programs exchange information, including 

across a network?
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More OS issues…

• concurrency: how are parallel activities (computation and I/O) 
created and controlled? 

• scale: what happens as demands or resources increase? 
• persistence: how do you make data last longer than program 

executions? 
• distribution: how do multiple computers interact with each 

other? 
• accounting: how do we keep track of resource usage, and 

perhaps charge for it? 

There are tradeoffs, solution depends on scenario



Summary

• Introduction  
• Definition of an operating system 

– Hard to pin down 
• Historical look  
• Key functions  

– Timesharing  
– Multitasking 

• Various types of OS 
– Depends on platform and scenario 

• Next lecture: structure and organisation
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