Operating Systems
Fall 2014

Introduction

Myungjin Lee
myungjin.lee@ed.ac.uk

Computing systems are everywhere

90...

Measuring...

Atmel® ATMega128

) Top-side

Chipcon® CC
(b) Bottom-side

NET LI SRBTORRE vou Tube B e
I % ‘v’ - o rE

PANDORA |3 o pulse MINECRAFY

T o §. . -
¥ et Ewitter) SHtUNGIN

. TP

Instogram

-
-

What is an Operating System?

A big program
— Linux 3.10 has 15M lines of code

A program that manages a computer’s hardware

A program that acts an intermediary between the user of a
computer and computer hardware

Read Chapter 1.1 and 1.2 ©

Modern computer system

. USB controller —
adapter

System Bus

controller

Some goals of operating systems

Simplify the execution of user programs and make solving
user problems easier

Use computer hardware efficiently

— Allow sharing of hardware and software resources

Make application software portable and versatile
Provide isolation, security and protection among user
programs

Improve overall system reliability
— error confinement, fault tolerance, reconfiguration

The traditional Picture

Applications
OS

Hardware

 “The OS is everything you don’t need to write in order to run
your application”

« This depiction invites you to think of the OS as a library;
we’ll see that
— In some ways, it is:
« all operations on /O devices require OS calls (syscalls)
— In other ways, it isn't:
* you use the CPU/memory without OS calls
* it intervenes without having been explicitly called

The OS and Hardware

* An OS mediates programs’ access to hardware resources
(sharing and protection)

— computation (CPU)

— volatile storage (memory) and persistent storage (disk, etc.)

— network communications (TCP/IP stacks, Ethernet cards, etc.)
— input/output devices (keyboard, display, sound card, etc.)

« The OS abstracts hardware into logical resources and well-
defined interfaces to those resources (ease of use)
— processes (CPU, memory)
— files (disk)
— programs (sequences of instructions)
— sockets (network)

Why Bother with an OS?

« Application benefits
— programming simplicity

« see high-level abstractions (files) instead of low-level hardware details
(device registers)

 abstractions are reusable across many programs
— portability (across machine configurations or architectures)
 device independence: 3com card or Intel card?

 User benefits

— safety
« program “sees” its own virtual machine, thinks it “owns” the computer
« OS protects programs from each other
« OS fairly multiplexes resources across programs
— efficiency (cost and speed)
« share one computer across many users
« concurrent execution of multiple programs

Checkpoint

* Whatis an Operating System?
 What are the benefits of abstraction?

« What other benefits does an OS provide?

Transistor count

Hardware Complexity Increases

Microprocessor Transistor Counts 1971-2011 & Moore’s Law

2,600,000,000
1,000,000,000 -

100,000,000 -

10,000,000

1,000,000

100,000

10,000 -

2,300 -

16-Core SPARC T3
Six-Core Core i7,
ScCore Xeon 7400\ $ @10-Core Xeon Westmere-EX

Dual-Core ltanium 2@ @
AMD K10.
A\

POWER6®
Itanium 2 with 9MB cache ®
AMD K

+—-Quad-Core Itanium Tukwila
8-Core Xeon Nehalem-EX
*._ Six-Core Opteron 2400

Core i7 (Quad)

Itanium 2@

AMD K8

@Barton

® Atom

curve shows transistor

count doubling every $oon i etium I

hoiyears ®AMD K5

Pentium
8008@
4004® /RCA 1802
r T T T]
1971 1980 1990 2000 2011

Date of introduction

Moore’s Law: 2X transistors/
Chip Every 1.5 years

10

Millions of lines of code

60
50
40
30
20

Software Complexity Increases

D
O
D . . QO o)
obo +\& S E QL N \g\“b
& @ (_)$.°\§\~ © .Q\;F

Hardware/Software Changes with Time

1960s: mainframe computers (IBM)
1970s: minicomputers (DEC)

1980s: microprocessors and workstations (SUN), local-
area networking, the Internet

1990s: PCs (rise of Microsoft, Intel, Dell), the Web
2000s:

— Internet Services / Clusters (Amazon)

— General Cloud Computing (Google, Amazon, Microsoft)

— Mobile/ubiquitous/embedded computing (iPod, iPhone, iPad,
Android)

2010s: sensor networks, “data-intensive computing,”

computers and the physical world

2020: it's up to youl!!

Progression of Concepts and Form Factors

1950 1960 1970 1980 1990 2000
. MULTICS
mainframes : \ .
no compilers time distributed
software shared multiuser systems
batch multiprocessor
resu;lent networked fault tolerant
monitors
. UNIX
minicomputers .
no compilers
software , , ,
time multiuser multiprocessor
resident shared n;worked fault tolerant
monitors \
clustered
UNIX
desktop computers .
no compilers
software interactive multiprocessor
multiuser networked
UNIX
handheld computers |
compilers no
software
interactive

networked

An OS History Lesson

Operating systems are the result of a 60 year long
evolutionary process
— They were born out of need

We'll follow a bit of their evolution

That should help make clear what some of their functions
are, and why

In the Beginning...

1943 I [
— T.J. Watson (created IBM): g

“I think there is a world market for maybe five
computers.” i

Fast forward ... 1950 S

— There are maybe 20 computers in the world
* They were unbelievably expensive
* Imagine this: machine time is more valuable than person time!
» Ergo: efficient use of the hardware is paramount
— Operating systems are born
* They carry with them the vestiges of these ancient forces

15

The Primordial Computer

Diskosaurus

Prlnter

Input DeV|Ce

Memory

The OS as a linked library

* In the very beginning...

— OS was just a library of code that you linked into your program;
programs were loaded in their entirety into memory, and executed

« “OS” had an “API” that let you control the disk, control the printer,
etc.

— Interfaces were literally switches and blinking lights

— When you were done running your program, you'd leave and turn
the computer over to the next person

Asynchronous |/O

The diskosaurus was really slow

Add hardware so that the disk could operate without tying
up the CPU

— Disk controller

Hotshot programmers could now write code that:
— Starts an 1/O

— Goes off and does some computing

— Checks if the 1/0O is done at some later time

Upside

— Helps increase (expensive) CPU utilization
Downsides

— It's hard to get right
— The benefits are job specific

IBM 1401

4
8
!:
!
o
i
*

19

Multiprogramming

To further increase system utilization, multiprogramming
OSs were invented

— keeps multiple runnable jobs loaded in memory at once
— overlaps /O of one job with computing of another

« while one job waits for I/O completion, another job uses the CPU
— Can get rid of asynchronous I/O within individual jobs

« Life of application programmer becomes simpler; only the OS
programmer needs to deal with asynchronous events

— How do we tell when devices are done?
* Interrupts
* Polling

— What new requirements does this impose?

IBM System 360

21

Timesharing

« To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself
— optimize response time, perhaps at the cost of throughput
* Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g., editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running programs

« MIT CTSS system (operational 1961) was among the first
timesharing systems
— only one user memory-resident at a time (32KB memory!)
« MIT Multics system (operational 1968) was the first large

timeshared system
— nearly all OS concepts can be traced back to Multics!

— “second system syndrome”

* In early 1980s, a single

timeshared VAX-11/780 (like AN OO
the one in the Allen Center L
atrium) ran computing for all B

of CSE.

il A TE0 was i B WAL IR 8O
of RAM and 100MB of disk.

 An Apple iPhone 4 is 1GHz
(x1000), has 512MB of RAM
(x512), and 32GB of flash
(x320).

24

Parallel Systems

« Some applications can be written as multiple parallel threads or
processes

can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs [Burroughs D825, 1962]

need OS and language primitives for dividing program into multiple
parallel activities

need OS primitives for fast communication among activities

» degree of speedup dictated by communication/computation ratio
many flavors of parallel computers today

« SMPs (symmetric multi-processors)

« MPPs (massively parallel processors)

« NOWs (networks of workstations)

» Massive clusters (Google, Amazon.com, Microsoft)

« Computational grid (SETI @home)

Personal Computing

Primary goal was to enable new kinds of applications
Bit mapped display [Xerox Alto,1973]

— new classes of applications
— new input device (the mouse)

Move computing near the display
— why?

Window systems

— the display as a managed resource
Local area networks [Ethernet]

— why?

Effect on OS?

26

Distributed OS

Distributed systems to facilitate use of geographically
distributed resources

— workstations on a LAN
— servers across the Internet

Supports communications between programs
— interprocess communication

* message passing, shared memory
— networking stacks

Sharing of distributed resources (hardware, software)
— load balancing, authentication and access control, ...

Speedup isn’t the issue
— access to diversity of resources is goal

Client/Server Computing

Mail server/service

File server/service

Print server/service
Compute server/service
Game server/service
Music server/service
Web server/service

etc.

Peer-to-Peer (p2p) Systems

* Napster
 Gnutella

e BitTorrent

— example technical challenge: self-organizing overlay network
— technical advantage of BitTorrent?
— er ... legal advantage of BitTorrent?

Applications

OS

Hardware

Virtualization

Programming
Interface

Applications | Applications

OS OS

VM1 VM2

Virtual Machine Manager

(Hypervisor)

Hardware

Cloud Computing

« Amazon EC2 Customer
e Microsoft Azure . LT requests
e HP Helion PublicCloud | [>
Cloud
Firewall }—— Customer
I interface
Load Balancer J Cloud

management
commands

Management
services

Virtual
machines

Virtual
machines

Storage

31

The major OS issues

structure: how is the OS organized?

sharing: how are resources shared across users?

naming: how are resources named (by users or programs)?
security: how is the integrity of the OS and its resources ensured?
protection: how is one user/program protected from another?
performance: how do we make it all go fast?

reliability: what happens if something goes wrong (either with hardware
or with a program)?

extensibility: can we add new features?

communication: how do programs exchange information, including
across a network?

More OS issues...

concurrency: how are parallel activities (computation and 1/O)
created and controlled?

scale: what happens as demands or resources increase?

persistence: how do you make data last longer than program
executions?

distribution: how do multiple computers interact with each
other?

accounting: how do we keep track of resource usage, and
perhaps charge for it?

There are tradeoffs, not right and wrong!

© 2012 Gribble, Lazowska, Levy,

Zahorjan 33

Why Should One Learn Operating Systems?

* You may not ever build an OS

« But as a computer scientist or computer engineer you need
to understand the foundations

« Most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make
throughout your careers — compromises among and within
cost, performance, functionality, complexity, schedule ...

