Outline

1. Introduction

2. Recursive Autoencoders
 - Details
 - Reconstruction Error
 - Example
 - In Practice
 - Without Binary Trees
 - Semi-supervised
Recurrence Neural Networks

\[
\begin{bmatrix}
1.0 \\
3.5
\end{bmatrix} \rightarrow \begin{bmatrix}
1.0 \\
5.0
\end{bmatrix} \rightarrow \begin{bmatrix}
5.5 \\
6.1
\end{bmatrix} \rightarrow \begin{bmatrix}
4.5 \\
3.8
\end{bmatrix}
\]

\[
\begin{bmatrix}
0.4 \\
0.3
\end{bmatrix} \rightarrow \begin{bmatrix}
2.1 \\
2.3
\end{bmatrix} \rightarrow \begin{bmatrix}
7 \\
7
\end{bmatrix} \rightarrow \begin{bmatrix}
4.0 \\
4.5
\end{bmatrix}
\]

Mary was very hungry
Recurrent Neural Networks

Mary was very hungry.

$h_0 \rightarrow h_1 \rightarrow h_2 \rightarrow h_3 \rightarrow h_4(h_s)$
Recursive Autoencoders

- **input** is a binary tree
- **terminals** represented by vectors (i.e., embeddings)
- **learn** representations for tree nodes.

Mary was very hungry

- NP
- S
- VP
- ADJP
Compositionality

Partee (1995): the meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.
Partee (1995): the meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

Lakoff (1977): the meaning of the whole is a greater than the meaning of the parts.
Compositionality

Partee (1995): the meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

Lakoff (1977): the meaning of the whole is a greater than the meaning of the parts.

Frege (1884): never ask the meaning of a word in isolation but only in the context of a statement.
Compositionality

Partee (1995): the meaning of the whole is a function of the meaning of the parts and of the way they are syntactically combined.

Lakoff (1977): the meaning of the whole is a greater than the meaning of the parts.

Frege (1884): never ask the meaning of a word in isolation but only in the context of a statement.

Pinker (1994): composition of simple elements must allow the construction of novel meanings which go beyond those of the individual elements.
Recursive Definition of Meaning

Let node k have children i and j, whose meanings are x_i and x_j. The meaning of node k is:

$$y_k = f(W[x_i; x_j] + b)$$

- W and b are parameters to be learned
- $[x_i; x_j]$ denotes vector x_i concatenated vertically with vector x_j
- therefore W is a matrix in $\mathbb{R}^{d \times 2d}$, b is a bias term, a vector in \mathbb{R}^d
- function $f()$ is sigmoid or tahn

How can we train this model in a supervised fashion?
How can we train this model in a supervised fashion?

\[y_k = f(W[x_i; x_j] + b) \]

- We would need a target value \(t \) for the meaning \(y_r \) of the whole sentence (\(r \) stands for root).
- Then we could define a loss function for \(E \), e.g., square loss \(E = (t - y_r)^2 \), train the parameters \(W \) and \(b \) to minimize it.
- Compute the gradients \(\frac{\partial E}{\partial W}, \frac{\partial E}{\partial b} \) using any gradient descent method.
- Use SGD, optimize \(W \) and \(b \) based on one sentence at a time.
- Define error for training set (sum of the errors for each sentence).
Recursive Definition of Meaning

How can we train this model in a supervised fashion?

\[y_k = f(W[x_i; x_j] + b) \]

- We would need a **target value** \(t \) for the meaning \(y_r \) of the whole sentence (\(r \) stands for root)
- Then we could define a loss function for \(E \), e.g., square loss
 \[E = (t - y_r)^2 \]
 train the parameters \(W \) and \(b \) to minimize it
- Compute the gradients \(\frac{\partial E}{\partial W} \), \(\frac{\partial E}{\partial b} \) using any gradient descent method
- Use SGD, optimize \(W \) and \(b \) based on one sentence at a time.
- Define error for training set (sum of the errors for each sentence)
How can we train this model in a supervised fashion?

\[y_k = f(W[x_i; x_j] + b) \]

- We would need a target value \(t \) for the meaning \(y_r \) of the whole sentence (\(r \) stands for root).
- Then we could define a loss function for \(E \), e.g., square loss \(E = (t - y_r)^2 \), train the parameters \(W \) and \(b \) to minimize it.
- Compute the gradients \(\frac{\partial E}{\partial W}, \frac{\partial E}{\partial b} \) using any gradient descent method.
- Use SGD, optimize \(W \) and \(b \) based on one sentence at a time.
- Define error for training set (sum of the errors for each sentence).
But we do not know what the target meaning t should be!
Autoencoders

But we do not know what the target meaning t should be!

Autoencoders: goal of learning is to reconstruct the input!

- Learns function $h_{W,b}(x) \approx x$
- Limit on the number of hidden units
- Learns \textit{compressed} representation of input
- Can also impose \textit{sparsity} constraints
- Can be \textit{stacked} to form highly non-linear representations
Autoencoders

Takes input $x \in [0, 1]^d$, maps it to hidden representation $y \in [0, 1]^{d'}$ through

$$y = f(Wx + b)$$

Where f is a non-linearity such as the sigmoid.

y is then mapped back (with a decoder) into z:

$$z = f(W' y + b')$$

z is a prediction of x, given y.
Autoencoders

Unsupervised learning: no explicit target t
Goal: learn lower-dimensional representation

Hidden representation y

Input x Reconstruction error $L(x, z)$

Input is also the target!

Encoder f_θ
Decoder $g_{\theta'}$

Reconstructed input z
Autoencoders

Parameters optimized so that average reconstruction error is minimized (can be measured in many ways).

- squared error $L(x, z) = ||x - z||^2$
- cross-entropy of reconstruction:

$$L_H(x, z) = - \sum_{k=1}^{d} [x_k \log z_k + (1 - x_k) \log(1 - z_k)]$$

The hope is that y is a distributed representation that captures the coordinates along the main factors of variation in the data.

With one linear hidden layer and mean squared error criterion, k hidden units $\approx k$ principal components.
meaning at node k

$$y_k = f(W[x_i; x_j] + b)$$
Recursive Autoencoders

meaning at node k $y_k = f(W[x_i; x_j] + b)$

reconstructions of inputs x_i and x_j $[z_i; z_j] = Uy_k + c$
Recursive Autoencoders

meaning at node k

$y_k = f(W[x_i; x_j] + b)$

reconstructions of inputs x_i and x_j

$[z_i; z_j] = Uy_k + c$

- U is a matrix in $\mathbb{R}^{2d \times d}$ and c is a vector in \mathbb{R}^{2d}

- z_i and z_j are approximate reconstructions of the inputs x_i and x_j

- U and c are additional parameters to be trained to maximize the accuracy of reconstructions.
Recursive Autoencoders

meaning at node k

$$y_k = f(W[x_i; x_j] + b)$$

reconstructions of inputs x_i and x_j

$$[z_i; z_j] = Uy_k + c$$

- U is a matrix in $\mathbb{R}^{2d \times d}$ and c is a vector in \mathbb{R}^{2d}
- z_i and z_j are approximate reconstructions of the inputs x_i and x_j
- U and c are additional parameters to be trained to maximize the accuracy of reconstructions.

Specifically, the square loss at the node k is:

$$E_{rec} = \frac{1}{2} \| [x_i; x_j] - [z_i; z_j] \|^2$$

$$= \frac{1}{2} \| [x_i; x_j] - Uf(W[x_i; x_j] + b) - c \|^2$$
Recursive Autoencoders

meaning at node k

reconstructions of inputs x_i and x_j

reconstruction error

The error for a whole tree is the sum of the errors at all the non-leaf nodes of the tree.

Gradient methods can be used to learn W, b, U, and c, with no training labels provided from the outside.
Recursive Autoencoders

![Diagram of Recursive Autoencoders](image)

- Word vectors \(x = (x_1 \ldots x_n) \); binary tree structure
- \((y_1 \rightarrow x_3 x_4), (y_2 \rightarrow x_2 y_1), (y_3 \rightarrow x_1 y_2)\)
- Hidden representations \(y_i \) same dimensions as \(x_i \)
Recursive Autoencoders

- Avoid ending up with all meanings equal to zero (it would give zero error at all nodes whose children are not leaf nodes).
- Enforce all meaning vectors to have **unit length**:

\[y_k = \frac{f(W[x_i; x_j] + b)}{||f(W[x_i; x_j] + b)||} \]

- Difficult to reconstruct accurately the meanings of longer phrases.
- The definition of loss for node \(k \) is changed to be **weighted**:

\[E_{rec}(k) = \frac{n_i}{n_i + n_j} ||x_i - z_i||^2 + \frac{n_j}{n_i + n_j} ||x_j - z_j||^2 \]

\(z_i \) and \(z_j \) are reconstructions; \(n_i \) and \(n_j \) are the number of words covered by nodes \(i \) and \(j \)
Recursive Autoencoders

- Avoid ending up with all meanings equal to zero (it would give zero error at all nodes whose children are not leaf nodes).
- Enforce all meaning vectors to have unit length:
 \[y_k = \frac{f(W[x_i; x_j] + b)}{||f(W[x_i; x_j] + b)||} \]
- Difficult to reconstruct accurately the meanings of longer phrases.
- The definition of loss for node \(k \) is changed to be weighted:
 \[E_{rec}(k) = \frac{n_i}{n_i + n_j} ||x_i - z_i||^2 + \frac{n_j}{n_i + n_j} ||x_j - z_j||^2 \]

\(z_i \) and \(z_j \) are reconstructions; \(n_i \) and \(n_j \) are the number of words covered by nodes \(i \) and \(j \).
Selecting a Tree Structure

The reconstruction error for a single leaf node:

$E_{rec}(k) = \frac{n_i}{n_i + n_j} \| x_i - z_i \|^2 + \frac{n_j}{n_i + n_j} \| x_j - z_j \|^2$

The reconstruction error for a whole tree:

$\sum_{k \in T} E_{rec}(k)$

For sentence of length n, there is exponential number of possible trees!

Will use greedy algorithm to find good but not necessarily optimal tree.
Selecting a Tree Structure

- Consider $n - 1$ pairs of consecutive words
- Evaluate reconstruction error for each pair

Consider $n - 1$ pairs of consecutive words
Evaluate reconstruction error for each pair

$$p_{(1,2)}$$

$\text{x}_1 \quad \text{x}_2 \quad \text{x}_3 \quad \text{x}_4$
Selecting a Tree Structure

- Consider \(n - 1 \) pairs of consecutive words
- Evaluate reconstruction error for each pair

\[p_{(2,3)} \]

\[x_1 \quad x_2 \quad x_3 \quad x_4 \]
Selecting a Tree Structure

- Consider \(n - 1 \) pairs of consecutive words
- Evaluate reconstruction error for each pair
- Select pair with smallest error

\[
p_{(3,4)}
\]

\[
\begin{array}{c}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{array}
\]
Selecting a Tree Structure

- Consider \(n - 1 \) pairs of consecutive words
- Evaluate reconstruction error for each pair
- Select pair with smallest error
- Consider the remaining feasible pairs and new possible pairs on top of the first selected pair.
Selecting a Tree Structure

- Consider \(n - 1 \) pairs of consecutive words
- Evaluate reconstruction error for each pair
- Select pair with smallest error
- Consider the remaining feasible pairs and new possible pairs on top of the first selected pair.

\[
\begin{align*}
p_{(1,2)} & \quad x_1 \quad x_2 \\
p_{(3,4)} & \quad x_3 \quad x_4
\end{align*}
\]
Selecting a Tree Structure

- Consider \(n - 1 \) pairs of consecutive words.
- Evaluate reconstruction error for each pair.
- Select pair with smallest error.
- Consider the remaining feasible pairs and new possible pairs on top of the first selected pair.
Selecting a Tree Structure

- Consider $n - 1$ pairs of consecutive words
- Evaluate reconstruction error for each pair
- Select pair with smallest error
- Consider the remaining feasible pairs and new possible pairs on top of the first selected pair.
- Select pair with smallest error
Selecting a Tree Structure

- Consider $n - 1$ pairs of consecutive words
- Evaluate reconstruction error for each pair
- Select pair with smallest error
- Consider the remaining feasible pairs and new possible pairs on top of the first selected pair.
- Select pair with smallest error
- Continue until there is only one possible choice to create root
Use Meanings to Predict Labels

- Selena Gomez is the raddest $+1$
- She makes Britney Spears sound good -1

- Each node k of a tree has a meaning vector y_k
- Add a linear model on top of these vectors to predict target values.
- If values are binary, model is a logistic regression classifier.
- If there are three or more discrete values, the model is multinomial or multiclass logistic regression classifier.
Use Meanings to Predict Labels

Vector of predicted probabilities of r label values (V: parameter matrix)

$$\bar{p} = \text{softmax}(Vy_k)$$

Let \bar{t} be binary vector of length r indicating true label value of node k. Squared error of the predictions is $||\bar{t} - \bar{p}||^2$. Alternatively the log loss:

$$E_2(k) = - \sum_{i=1}^{r} t_i \log p_i$$

- We could predict the target value for the entire sentence;
- Instead, predict it for it for all internal nodes (not for leaf nodes).
- Label for the sentence applies to all the phrases of the sentence.
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[
J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2
\]
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
- \(S \) is collection of \(m \) labeled training sentences \(<s, t> \)
Use Meanings to Predict Labels

The objective function to be minimized during learning:

$$J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2$$

- $E(s, t, \theta)$ is the total error for one sentence s with label t
- S is collection of m labeled training sentences $<s, t>$
- $\theta = <W, b, U, c, V>$ is all the parameters of the model
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
- \(S \) is collection of \(m \) labeled training sentences \(<s, t> \)
- \(\theta = <W, b, U, c, V> \) is all the parameters of the model
- \(\lambda \) is the strength of \(L_2 \) regularization
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s, t> \in S} E(s, t, \theta) + \frac{\lambda}{2} \|\theta\|^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
- \(S \) is collection of \(m \) labeled training sentences \(<s, t> \)
- \(\theta = <W, b, U, c, V> \) is all the parameters of the model
- \(\lambda \) is the strength of \(L_2 \) regularization

\[E(s, t, \theta) = \sum_{k \in T(s)} \alpha E_{rec}(k) + (1 - \alpha) E_2(k) \]
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} \|\theta\|^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
- \(S \) is collection of \(m \) labeled training sentences \(< s, t > \)
- \(\theta = < W, b, U, c, V > \) is all the parameters of the model
- \(\lambda \) is the strength of \(L_2 \) regularization

\[E(s, t, \theta) = \sum_{k \in T(s)} \alpha E_{rec}(k) + (1 - \alpha) E_2(k) \]

- \(T(s) \) set of non-leaf nodes of tree greedily constructed for \(s \)
Use Meanings to Predict Labels

The objective function to be minimized during learning:

\[J = \frac{1}{m} \sum_{<s,t> \in S} E(s, t, \theta) + \frac{\lambda}{2} ||\theta||^2 \]

- \(E(s, t, \theta) \) is the total error for one sentence \(s \) with label \(t \)
- \(S \) is collection of \(m \) labeled training sentences \(<s, t> \)
- \(\theta = <W, b, U, c, V> \) is all the parameters of the model
- \(\lambda \) is the strength of \(L_2 \) regularization

\[E(s, t, \theta) = \sum_{k \in T(s)} \alpha E_{rec}(k) + (1 - \alpha) E_2(k) \]

- \(T(s) \) set of non-leaf nodes of tree greedily constructed for \(s \)
- \(\alpha \) relative importance of reconstruction and label errors.
Use Meanings to Predict Labels

Reconstruction error

Cross-entropy error

$W^{(1)}$

$W^{(2)}$

$W^{(\text{label})}$
People anonymously write short personal stories. Once a story is on the site, each user can give a single vote to one of five label categories.
Results on EP Dataset

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>20.0</td>
</tr>
<tr>
<td>Most Frequent</td>
<td>38.1</td>
</tr>
<tr>
<td>Baseline 1: Binary BoW</td>
<td>46.4</td>
</tr>
<tr>
<td>Baseline 2: Features</td>
<td>47.0</td>
</tr>
<tr>
<td>Baseline 3: Word Vectors</td>
<td>45.5</td>
</tr>
<tr>
<td>RAE (our method)</td>
<td>50.1</td>
</tr>
</tbody>
</table>

Table 1: Accuracy of predicting the class with most votes.
Summary

- Learning compositional representations using recursive autoencoders
- Algorithm can predict sentence level sentiment distributions
- Without using any hand-engineered resources such as sentiment lexica, POS-taggers, or parsers!
- Model learns task specific meaning representations
- Semi-supervised learning is key in learning useful representations.