Lecture 10: Distributional Semantics

Mirella Lapata

School of Informatics
University of Edinburgh
mlap@inf.ed.ac.uk

February 23, 2015
1 Vector Space Models
 • Distributional Hypothesis
 • Constructing Vector Spaces
 • Problems

2 Latent Semantic Analysis
 • Dimensionality Reduction
 • Priming Simulation
 • TOEFL Task

3 Discussion

Reading: J&M 20.7, 23.1; Landauer and Dumais (1997).
The Meaning of “Bear”

WordNet
A lexical database for English

bear \rightarrow carnivore

predator, predatory animal

animal, animate being, beast, brute, creature, fauna
The Meaning of “Bear”

Latent Semantic Analysis (LSA; Landauer and Dumais, 1997)
Latent Dirichlet Allocation (LDA; Griffiths et al., 2007)
Neural Language Model (NLM; Collobert and Weston 2008)
The Meaning of “Bear”

Latent Semantic Analysis (LSA; Landauer and Dumais, 1997)
Latent Dirichlet Allocation (LDA; Griffiths et al., 2007)
Neural Language Model (NLM; Collobert and Weston 2008)
The Meaning of “Bear”

Latent Semantic Analysis (LSA; Landauer and Dumais, 1997)
Latent Dirichlet Allocation (LDA; Griffiths et al., 2007)
Neural Language Model (NLM; Collobert and Weston 2008)
Goal: find a *representation* that succinctly describes the meaning of a word, phrase, sentence, document.
Goal: find a *representation* that succinctly describes the meaning of a word, phrase, sentence, document.

Or at least: find a representation so as to determine if two words or texts have *similar* meanings; linguistic environment \approx corpus.
Goal: find a *representation* that succinctly describes the meaning of a word, phrase, sentence, document.

Or at least: find a representation so as to determine if two words or texts have *similar* meanings; linguistic environment \approx corpus.

Why is this a good thing?

- Retrieve documents relevant to a query.
- Disambiguate word senses (for IR, MT, etc.).
- Explain human learning and processing of words (word associations, speed of acquisition, etc).
- Theory neutral, few assumptions re word meaning.
Distributional Hypothesis

Linguists have long conjectured that the context in which a word occurs determines its meaning:

- You shall know a word by the company it keeps (Firth);
- The meaning of a word is defined by the way it is used (Wittgenstein).

This leads to the distributional hypothesis about word meaning:

- the context surrounding a given word provides information about its meaning;
- words are similar if they share similar linguistic contexts;
- semantic similarity \approx distributional similarity.
Distribution is represented using a *context vector*.

<table>
<thead>
<tr>
<th></th>
<th>pet</th>
<th>bone</th>
<th>fur</th>
<th>run</th>
<th>brown</th>
<th>screen</th>
<th>mouse</th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>w_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Vector for w: all words that co-occur with w (here, binary).
- Vector dimensions $=$ number of context words.
- Similar words should have similar vectors.
Distributional Hypothesis

Distribution is represented using a *context vector*.

<table>
<thead>
<tr>
<th></th>
<th>pet</th>
<th>bone</th>
<th>fur</th>
<th>run</th>
<th>brown</th>
<th>screen</th>
<th>mouse</th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>w_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>w_3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- Vector for w: all words that co-occur with w (here, binary).
- Vector dimensions = number of context words.
- Similar words should have similar vectors.
Constructing Vector Spaces

Words occur in context:

- car engine hood tires truck trunk
- car emissions hood make model trunk
- Chomsky corpus noun parsing tagging wonderful

Contexts can be obtained from corpora (large collections of text). Note that we have already removed stop words (frequent words such as the, of, although).
Select target words:

- Blue: car, engine, hood, tires, truck, trunk
- Red: car, emissions, hood, make, model, trunk
- Black: Chomsky, corpus, noun, parsing, tagging, wonderful
Define the context (here: symmetric, −5, +5):

- Car engine hood tires truck trunk
- Car emissions hood make model trunk
- Chomsky corpus noun parsing tagging wonderful
Define the context (here: symmetric, -5, $+5$):

Car engine hood tires truck trunk

Car emissions hood make model trunk

Chomsky corpus noun parsing tagging wonderful
Define the context (here: symmetric, −5, +5):

- **Blue** context: car, engine, hood, tires, truck, trunk
- **Red** context: car, emissions, hood, make, model, trunk
- **Chomsky** corpus, noun, parsing, tagging, wonderful
Constructing Vector Spaces

Define the context (here: symmetric, −5, +5):

- \text{car} \quad \text{engine} \quad \text{hood} \quad \text{tires} \quad \text{truck} \quad \text{trunk}

- \text{car emissions} \quad \text{hood} \quad \text{make} \quad \text{model} \quad \text{trunk}

- Chomsky \quad \text{corpus} \quad \text{noun} \quad \text{parsing} \quad \text{tagging} \quad \text{wonderful}
Constructing Vector Spaces

Create co-occurrence matrix:

<table>
<thead>
<tr>
<th></th>
<th>car</th>
<th>Chomsky</th>
<th>corpus</th>
<th>emissions</th>
<th>engine</th>
<th>hood</th>
<th>make</th>
<th>model</th>
<th>noun</th>
<th>parsing</th>
<th>tagging</th>
<th>tires</th>
<th>truck</th>
<th>trunk</th>
<th>wonderful</th>
</tr>
</thead>
<tbody>
<tr>
<td>car</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>hood</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Chomsky</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Informal algorithm for constructing vector spaces:

- pick the words you are interested in: \textit{target words};
- define number of words surrounding target word: \textit{context window};
- count number of times the target word co-occurs with context words: \textit{co-occurrence matrix}.

The context can also be defined in terms of documents, paragraphs, or sentences (rather than words around target word).
Measure the distance between vectors:

- **Euclidean**
- **Manhattan**
- **Cosine**
Measures of Distributional Similarity

The **cosine** of the angle between two vectors \mathbf{x} and \mathbf{y} is:

$$
cos(\mathbf{x}, \mathbf{y}) = \frac{\mathbf{x} \cdot \mathbf{y}}{||\mathbf{x}|| \cdot ||\mathbf{y}||} = \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} y_i^2}}
$$

The **Euclidean distance** of two vectors \mathbf{x} and \mathbf{y} is:

$$
||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}
$$

Many more similarity measures exist.
Document similarity

- We represent document semantics also using vectors.
- **Bag-of-words (BOW) model**: order of words is irrelevant.
- Naive version: represent documents by word counts.

<table>
<thead>
<tr>
<th></th>
<th>pet</th>
<th>bone</th>
<th>fur</th>
<th>run</th>
<th>brown</th>
<th>screen</th>
<th>mouse</th>
<th>fetch</th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>d_2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

Document-term co-occurrence matrix
The tf-idf weight of a term is the product of its tf weight and its idf weight.

Words that occur more frequently in a document are often more central to its meaning.

But, words that occur frequently in all documents have little semantic value.

Increases with the number of occurrences within a document.

Increases with the rarity of the term in the collection.
The tf-idf weight of a term is the product of its tf weight and its idf weight.

Words that occur more frequently in a document are often more central to its meaning.

But, words that occur frequently in all documents have little semantic value.

Increases with the number of occurrences within a document.

Increases with the rarity of the term in the collection.
The tf-idf weight of a term is the product of its tf weight and its idf weight.

Words that occur more frequently in a document are often more central to its meaning.

But, words that occur frequently in all documents have little semantic value.

Increases with the number of occurrences within a document.

Increases with the rarity of the term in the collection.
Using the Vector Space Model

Can compute similarities between documents, or between documents and queries.

Query: “computer pointer”
Problem: the co-occurrence matrix can be very sparse (many zeros) and noisy (e.g., due to words with the same meaning).

- auto engine bonnet tires lorry boot
- car emissions hood make model trunk
- make hidden Markov model emissions normalize
Problem: the co-occurrence matrix can be very sparse (many zeros) and noisy (e.g., due to words with the same meaning).

- **auto** engine bonnet tires lorry boot
- **car** emissions hood make model trunk
- make hidden Markov model emissions normalize
Problems

Problem: the co-occurrence matrix can be very sparse (many zeros) and noisy (e.g., due to words with the same meaning).

- **auto** engine **bonnet** tires lorry boot
- **car** emissions **hood** make model trunk
- make hidden Markov model emissions normalize
Problem: the co-occurrence matrix can be very sparse (many zeros) and noisy (e.g., due to words with the same meaning).

- **auto** engine **bonnet** tires lorry **boot**
- **car** emissions **hood** make model **trunk**
- make hidden Markov model emissions normalize
In order to address these problems, reduce the *dimensionality* of the co-occurrence matrix M:

- *project* the word vectors into a different subspace so that vector cosines more accurately represent semantic similarity;
- in a *lower dimensional space*, synonym vectors may not be orthogonal;
- *singular value decomposition* is a widely used projection method;
Dimensionality Reduction

- Projecting from two dimensions to one:
- Single dimension (line) is chosen to follow direction of greatest variation.
- Fit using least squares regression, i.e., minimizing

\[\sum_{i=1}^{n} (y_i - f(x_i))^2 \]
The singular value decomposition of an m-by-n matrix A is:

$$A_{mn} = U_{mm} \Sigma_{mn} V_{nn}^T$$

- an orthogonal matrix U, a diagonal matrix Σ, and the transpose of an orthogonal matrix V.
- m-dimensional vectors making up the columns of U are called left singular vectors.
- the n-dimensional vectors making up the columns of V are called right singular vectors.
- Σ contains the square roots of eigenvalues from U or V in descending order.
- A single value $A[i][j]$ in the matrix may be computed by the dot product of the i-th row vector and the j-th column vector, scaled by singular values.
Singular Value Decomposition (SVD)

\[D = U \times \Sigma \times V^T \]

\[
\begin{bmatrix}
 d_1 & d_2 & \cdots & d_n
\end{bmatrix} = \begin{bmatrix}
 u_1 & \cdots & u_r
\end{bmatrix}
\]

\[
\Sigma = \begin{bmatrix}
 \sigma_1 & 0 & \cdots & 0 \\
 0 & \sigma_2 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & \sigma_r
\end{bmatrix}
\]
Latent Semantic Analysis

- Best known vector space model (Landauer and Dumais, 1997).
- Natural language engineering:
 - lexicon acquisition (e.g., synonyms), unsupervised morphology;
 - essay grading, text coherence;
 - information retrieval;
 - language modeling, summarization, etc.
- Cognitive science:
 - semantic priming;
 - TOEFL 2nd language learning test.
Best known vector space model (Landauer and Dumais, 1997).

Natural language engineering:
- lexicon acquisition (e.g., synonyms), unsupervised morphology;
- essay grading, text coherence;
- information retrieval;
- language modeling, summarization, etc.

Cognitive science:
- semantic priming;
- TOEFL 2nd language learning test.
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground drown
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground drown cancer
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

 ground drown cancer

The patient sensed that this was not a routine visit. The doctor hinted that there was reason to remove the mole.
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground drown cancer

The patient sensed that this was not a routine visit. The doctor hinted that there was reason to remove the mole.

ground
Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground drown cancer

The patient sensed that this was not a routine visit. The doctor hinted that there was reason to remove the mole.

ground drown
Semantic Priming

Till, Moss and Kintsch’s (1988) lexical decision experiment

The gardener pulled the hose around to the holes in the yard. Perhaps the water would solve his problem with the mole.

ground drown cancer

The patient sensed that this was not a routine visit. The doctor hinted that there was reason to remove the mole.

ground drown cancer
Till, Moss and Kintsch’s (1988) results:

- words related to both senses of ambiguous word were primed immediately after presentation;
- after about 300 ms only the context appropriate associates remained significantly primed;

LSA model predicts: Vector average of context has a higher cosine with semantically congruent words.

The patient sensed that this was not a routine visit.
The doctor hinted that there was reason to remove the mole.

drown cancer ground
.15 .21 .15
The TOEFL Task

Test of English as a Foreign Language tests non-native speakers’ knowledge of English.

You will find the office at the main intersection.

(a) place
(b) crossroads
(c) roundabout
(d) building

This is a standard task in the cognitive modeling literature, and vectors space models are frequently used to solve it.
The TOEFL Task

Test of English as a Foreign Language tests non-native speakers’ knowledge of English.

You will find the office at the main intersection.

- (a) place
- (b) crossroads
- (c) roundabout
- (d) building

This is a standard task in the cognitive modeling literature, and vectors space models are frequently used to solve it.
The TOEFL Task

- 80 items: 1 word/4 alternative words.
- Compute semantic representations for probe and answer words.
- Word with largest cosine to the probe is correct answer.
- LSA was trained on a 4.6 M corpus from encyclopedia.
- LSA answered 64.4% items correctly.
- Non-native speakers’ average is 64.5%.
- This average is adequate for admission in many US universities.
Discussion

Strengths:
- fully automatic construction;
- representationally simple: all we need is a corpus and some notion of what counts as a word;
- language-independent, cognitively plausible.

Weaknesses:
- no generative model, many ad-hoc parameters
- ambiguous words: their meaning is the average of all senses
- context words contribute indiscriminately to meaning;

The author received much acclaim for his new book.
For author acclaim his much received new book.