Language Models

Feedforward language models

Reading: Bengio et al. 2003
Background: Jurafsky and Martin (ed. 3) 4.0-4.3

Predict the next word!

Summer is hot winter is ____
A language model is a probabilistic generative model of strings

A language model assigns probabilities to sequences

- Often a simple n-gram model. Trigrams models often work well.
- applications:
 - speech recognition
 - machine translation
 - text completion
 - optical character recognition
 - image captioning
 - grammar checking

Applications of Language Modeling

Machine translation:

- word ordering: $P(\text{the cat is small}) > P(\text{small the is cat})$;
- word choice: $P(\text{walking home after school}) > P(\text{walking house after school})$.

Grammar checking:

- word substitutions:
 $P(\text{the principal resigned}) > P(\text{the principle resigned})$;
- agreement errors: $P(\text{the cats sleep in the basket}) > P(\text{the cats sleeps in the basket})$.

She is drinking a hot cup of _____

In the park I saw a _____

Image captioning
Applications of Language Modeling

Speech recognition:

<table>
<thead>
<tr>
<th></th>
<th>hostages</th>
<th>conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a 0.187</td>
<td>0.734</td>
</tr>
<tr>
<td>2</td>
<td>house</td>
<td>0.078</td>
</tr>
<tr>
<td>3</td>
<td>conference</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>of 0.343</td>
<td>0.773</td>
</tr>
<tr>
<td>5</td>
<td>a 0.573</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>being</td>
<td>1 recorded</td>
</tr>
<tr>
<td>7</td>
<td>which</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>has</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>that</td>
<td>0.039</td>
</tr>
</tbody>
</table>

a conference is being recorded

Text completion:

How to derive an \(n \)-gram language model

Given a sequence of words \(w_1 \ldots w_k \), how do we define \(P(w_1 \ldots w_k) \)?

Let \(W_i \) be a r.v. taking value of word at position \(i \).

Use the chain rule:

\[
P(w_1 \ldots w_k) = P(W_1 = w_1) \times P(W_2 = w_2 | W_1 = w_1) \times \ldots \times P(W_k = w_k | W_1 = w_1, \ldots, W_k-1 = w_k-1)
\]

Written more concisely

Use the chain rule:

\[
P(w_1 \ldots w_k) = P(w_1) \times P(w_2 | w_1) \times \ldots \times P(w_k | w_1, \ldots, w_k-1) \times P(\text{STOP} | w_1, \ldots, w_k) = \prod_{i=1}^{k+1} P(w_i | w_1, \ldots, w_k)
\]

Defines joint distribution over infinite sample space in terms of conditional distributions, each over finite sample spaces (but with potentially infinite history!)

Language modeling as probabilistic prediction

Given a finite vocabulary \(V \), we want to define a probability distribution \(P : V^* \rightarrow \mathbb{R}_+ \).

The finite vocabulary bit should worry you. We’ll come back to this, but not today!

Revision questions:

- What is the sample space?
- What might be some useful random variables?
- What constraints do we need to satisfy?
Make it work by making a Markov assumption: n-gram models

$$P(w_i | w_1, ..., w_{i-1}) \sim P(w_i | w_{i-n+1}, ..., w_{i-1})$$

What is $P(w_i | w_{i-n+1}, ..., w_{i-1})$?

Given $w_{i-n+1}, ..., w_{i-1}$, P is a probability distribution, hence:

$$P : \mathcal{V} \rightarrow \mathbb{R}_+$$

$$\sum_{w \in \mathcal{V}} P(w | w_{i-n+1}, ..., w_{i-1}) = 1$$

How can we define such a function?

Simplest idea: let $P(w_i | w_{i-n+1}, ..., w_{i-1})$ be a parameter (i.e. a real number) in a table indexed by $w_{i-n+1}, ..., w_i$. What are some problems with this?

Estimating n-gram Probabilities

We can get maximum likelihood estimates for the conditional probabilities from n-gram counts in a corpus:

$$P(w_2 | w_1) = \frac{n(w_1, w_2)}{n(w_1)}$$

$$P(w_3 | w_1, w_2) = \frac{n(w_1, w_2, w_3)}{n(w_1, w_2)}$$

But building good n-gram language models can be difficult:

- the higher the n, the better the performance
- but most higher-order n-grams will never be observed—are these sampling zeros or structural zeros?
- good models need to be trained on billions of words
- this entails large memory requirements
- smoothing and backoff techniques are required.

Using n-gram Language Models

If we have a sequence of words $w_1 \ldots w_k$ then we can use the language model to predict the next word w_{k+1}:

$$\hat{w}_{k+1} = \arg\max_{w_{k+1}} P(w_{k+1} | w_1 \ldots w_k)$$

Being able to predict the next word is useful for applications that process input in real time (word-by-word).

Feedforward language models
What can we estimate with a universal function approximator?

Probability simply requires us to obey the following rules (remember: V is finite):

$$P : V \rightarrow \mathbb{R}_+$$

$$\sum_{w \in V} P(w \mid w_{i-n+1}, \ldots, w_{i-1}) = 1$$

In the last lecture we learned that multi-layer perceptrons were universal function approximators. And, we have a learning algorithm for them.

Can we use them to learn P?

Probability distributions are vectors!

Summer is hot winter is ____

- cold 0.6
- grey 0.3
- winter 0.1
- red 0
- is 0
- hot 0
- summer 0

Multilayer perceptrons have only one data type

Input: a vector of real numbers.

Output: a vector of real numbers. (Vectors of size 1 are still vectors!)

Turn any vector into a probability with the softmax function!

$$P(Y = y \mid X) = \frac{\exp(y \cdot w)}{\sum_{y' \in Y} \exp(y' \cdot w)}$$

- Softmax is a generalization of the logistic function
- Takes the inner product of the representation of every possible outcome y (a vector) and the weights w to produce a real value for the outcome.
- Exponentiation makes every value positive.
- Normalization makes everything sum to one.
Elements of discrete vocabularies are vectors!

<table>
<thead>
<tr>
<th></th>
<th>Summer</th>
<th>is</th>
<th>hot</th>
<th>winter</th>
<th>is</th>
</tr>
</thead>
<tbody>
<tr>
<td>is</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>cold</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>grey</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>hot</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>summer</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>winter</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Feedforward LM: function from a vectors to a vector

Summary

- Language models assign string probabilities
- Useful for word prediction in many NLP applications
- n-gram models simplify language modeling via a Markov assumption
- n-gram models can be parameterized with simple multilayer neural network
- Many conditional probability distribution can be parameterized with neural networks using a similar strategy
WHAT IF I TOLD YOU

YOU CAN ENCODE AN ENTIRE SENTENCE IN A VECTOR