
DOI 10.1007/s11168-006-9010-2
Research on Language and Computation (2006) 4:39–75 © Springer 2006

Efficient Realization of Coordinate Structures
in Combinatory Categorial Grammar

MICHAEL WHITE
School of Informatics, University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW,
UK (Web: http://www.iccs.informatics.ed.ac.uk/˜mwhite/)

Abstract. We describe a chart realization algorithm for Combinatory Categorial Grammar
(CCG), and show how it can be used to efficiently realize a wide range of coordination phe-
nomena, including argument cluster coordination and gapping. The algorithm incorporates
three novel methods for improving the efficiency of chart realization: (i) using rules to chunk
the input logical form into sub-problems to be solved independently prior to further combi-
nation; (ii) pruning edges from the chart based on the n-gram score of the edge’s string, in
comparison to other edges with equivalent categories; and (iii) formulating the search as a
best-first anytime algorithm, using n-gram scores to sort the edges on the agenda. The algo-
rithm has been implemented as an extension to the OpenCCG open source CCG parser, and
initial performance tests indicate that the realizer is fast enough for practical use in natural
language dialogue systems.

Key words: Combinatory Categorial Grammar, computational semantics, natural language
generation, surface realization.

1. Introduction

Chart realization algorithms (Shieber, 1988; Kay, 1996; Shemtov, 1997;
Carroll et al., 1999; Moore, 2002) perform the inverse task of chart pars-
ing algorithms: that is, rather than transducing strings to logical forms
(LFs), they transduce LFs to strings, a task often called surface (or lin-
guistic or syntactic) realization.1 Many variations on the chart realization
scheme are possible in principle, depending in part on the grammatical
framework one adopts. In this paper, we describe a chart realization algo-
rithm for Steedman’s Combinatory Categorial Grammar (CCG; Steedman,
1999, 2000a, b). Since CCG is particularly known for its unique account of
coordination, as a case study, we show how the algorithm can be used to
efficiently realize a wide range of coordination phenomena, including argu-
ment cluster coordination and gapping. Along the way, we also show how the
algorithm – together with the approach to semantic construction we adopt
– makes it possible to use differences in the input LF to control the choice
of coordination options made available by the grammar.

40 M. WHITE

The algorithm incorporates three novel methods for improving the efficie-
ncy of chart realization. The first method makes use of a small set of rules,
written by the grammar author, for chunking input LFs into sub-problems
to be solved independently prior to further combination. This technique
addresses the problem, noted by Kay (1996), that chart realization algorithms
can waste a great deal of time on generation paths containing semantically
incomplete phrases. While the method is not fully automatic, as it requires
the insights of the grammar author, it is more flexible than Kay’s approach,
and also extends to cases not considered by Kay; in particular, it can help
to more efficiently realize coordinated constituents, including non-standard
ones.

The second and third methods involve integrating n-gram scoring of pos-
sible realizations into the chart realization algorithm, as proposed by Var-
ges and Mellish (2001), rather than ranking all complete realizations by
their n-gram score as a post-process, as in e.g. (Langkilde and Knight,
1998; Langkilde-Geary, 2002). Specifically, the second method involves
pruning edges from the chart based on the n-gram score of the edge’s
string – in comparison to other edges with equivalent categories – while the
third method involves formulating the search as a best-first anytime algo-
rithm, using n-gram scores to sort the edges on the agenda. These two
easy-to-implement methods partially address the problem that the gram-
mar may license an exponential number of possible realizations for a given
input, especially with modifiers whose linear order is left relatively uncon-
strained (Kay, 1996; Carroll et al., 1999). They do so by helping to ensure
that a good realization can be found quickly, even when it would take a
long time to find the best realization or all possible realizations. We suggest
that this emphasis is appropriate for the needs of natural language dialogue
systems, where response times must be kept short in order to achieve suffi-
cient interactivity.

Although the three efficiency methods are particularly well suited to
CCG, they are potentially applicable to other grammatical frameworks as
well. While the first method depends in part on the details of our approach
to semantic construction, the second method just requires a means of iden-
tifying edges with equivalent derivational potential, and the third method
should be directly applicable to other grammatical frameworks.

The algorithm has been implemented as an extension to the OpenCCG2

open source CCG parser, and takes advantage of the multi-modal exten-
sions to CCG developed by Baldridge (2002) and Baldridge and Kruijff
(2003), as well as their dependency-based approach to representing lin-
guistic meaning, Hybrid Logic Dependency Semantics (HLDS; Kruijff,
2001, 2003; Baldridge and Kruijff, 2002). Initial performance tests indicate
that the realizer is fast enough for practical use in natural language dia-
logue systems. To date, the OpenCCG realizer has been deployed in two

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 41

prototype dialogue systems (den Os and Boves, 2003; Moore et al., 2004),
where realization times have been satisfactory.

The rest of the paper is organized as follows. In section 2, we provide
background on CCG and HLDS. In section 3, we present our approach to
semantic construction and discuss how it facilitates realization. In section 4,
we present the algorithm itself, including its novel methods. In section 5,
we show how the realizer handles a wide range of coordination phenomena,
then in section 6, we clarify the semantics of the HLDS representations, via
a translation to the discourse representations structures of Discourse Repre-
sentation Theory (DRT; Kamp and Reyle, 1993). In section 7, we describe
our initial performance tests. Finally, in section 8, we discuss related work
and conclude with a discussion of future directions.

2. Background

2.1. Combinatory categorial grammar

The CCG is a unification-based categorial framework that is both linguis-
tically and computationally attractive. We provide here a brief overview of
CCG (see Steedman, 2000b for an extensive introduction).

A given CCG grammar is defined almost entirely in terms of the entries
of the lexicon, which are (possibly complex) categories bearing standard fea-
ture information (such as verb form, agreement, etc.) and sub-categorization
information. Some simplified lexical entries are given below:

(1) a. a � np/n
b. musician � n
c. that � (n\n)/(svf orm=f in|np)

d. Bob � np
e. saw � svf orm=f in\np/np

The slashes indicate the direction in which an argument category is sought
in the string: the forward slash (/) specifies an argument appearing to the
right; the backward slash (\) specifies an argument appearing to the left;
and the vertical slash (|) specifies an argument appearing in either direction.
Note that the argument category always appears on the right-hand side of
the slash, with the result category on the left-hand side of the slash. A con-
vention of left associativity is assumed, so that a category such as s\np/np
is equivalent to (s\np)/np.

CCG has a small set of rules which can be used to combine categories
in derivations. The two most basic rules are forward (〉) and backward (〈)
function application:

(2)
(>) X/Y Y ⇒ X
(<) Y X\Y ⇒ X

42 M. WHITE

CCG also employs further rules based on the composition (B), type raising
(T), and substitution (S) combinators of combinatory logic. Each combin-
ator gives rise to several directionally distinct rules; for example, there are
forward and backward rules for both composition and type raising:3

(3)

(>B) X/Y Y/Z ⇒ X/Z
(<B) Y\Z X\Y ⇒ X\Z
(>T) X ⇒ Y/(Y\X)

(<T) X ⇒ Y\(Y/X)

These rules are crucial for building the “non-standard” constituents that
are the hallmark of categorial grammars, and which are essential for CCG’s
handling of coordination, extraction, intonation, and other phenomena.
For example, CCG’s rules and the categories given in (1) lead to the fol-
lowing derivation of the relative clause that Bob saw, as a post-modifier of
musician:

(4) a musician that Bob saw

np/n n (n\n)/(s|np) np s\np/np
>T

s/(s\np)
>B

s/np
>

n\n
<n
>np

As the derivation in (4) shows, type raising and composition allow
substrings like Bob saw to be analyzed as full-fledged constituents, with cate-
gory s/np. They can therefore undergo coordination, enabling a movement-
and deletion-free account of right node raising:

(5) Ted adores but Gil detests a musician that Bob saw

s/np s\s/s$ s/np np
>

(s/np)\(s/np)
<

s/np
>s

The derivation in (5) relies on the category s\s/s$ for the conjunction
but, where s$ unifies with either s or any function category into s. In sec-
tion 5, we will see how this category for conjunctions enables the realizer
to handle a variety of clausal coordination phenomena.

In addition to the combinatory rules like those in (3), a CCG grammar
may also contain a handful of unary type changing rules. For example, a
unary type changing rule similar to the category for that in (1) can be used
for reduced relatives, as in a musician Bob saw:

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 43

(6) svform=fin |np ⇒ n\n

As Hockenmaier and Steedman (2002) suggest, unary rules such as (6)
can be thought of as corresponding to zero morphemes in the lexicon. In
particular, note that unary type changing rules – unlike the combinatory
rules in (2) and (3) – may introduce their own semantics, in which case
the realizer must track their semantic contribution, as with ordinary lexical
items.

OpenCCG uses a multi-modal version of CCG (Baldridge, 2002; Bald-
ridge and Kruijff, 2003), where modalities on the slashes enable fine-grained
lexicalized derivational control over the re-ordering and re-bracketing effects
of the various type raising and composition operators. The modalities fur-
thermore make it possible to employ a fully universal rule component and
to write more efficient unification schemes for rule application than for the
original CCG framework. An advantage of the present approach to realiza-
tion is that it directly reuses the derivational machinery originally developed
for the OpenCCG parser, making the multi-modal improvements to CCG
completely orthogonal to the realizer’s concerns. For this reason, we will
pass over the details of multi-modal CCG here.

2.2. Hybrid logic dependency semantics

Like other compositional grammatical frameworks, CCG allows logical
forms to be built in parallel with the derivational process. Traditionally,
the λ-calculus has been used to express semantic interpretations, but work
in other frameworks has moved to using more flexible representations in
computational implementations, such as the Minimal Recursion Semantics
(MRS) framework (Copestake et al., 2001) used for HPSG. In the context
of categorial grammar, Kruijff (2001, 2003) proposes a framework that
utilizes hybrid logic (Blackburn, 2000) to realize a dependency-based per-
spective on meaning. Baldridge and Kruijff (2002) show how this frame-
work, HLDS, relates closely to MRS, and show how terms of HLDS can
be built compositionally with CCG via unification. In the next section, we
show how HLDS’s flexibility enables an approach to semantic construction
that ensures semantic monotonicity, simplifies equality tests, and avoids
copying in coordinate constructions.

As Blackburn (2000) explains, hybrid logic provides a language for repre-
senting relational structures that overcomes standard modal logic’s inability
to directly refer to states in a model – or equivalently, nodes in a graph. It
does so by using nominals, a new sort of basic formula with which we can
explicitly name states/nodes. Like propositions, nominals are first-class cit-
izens of the object language: formulas can be formed using propositions,
nominals, standard boolean operators, and the satisfaction operator, @. A

44 M. WHITE

formula @i(p∧〈F〉(j ∧q)) indicates that the formulas p and 〈F〉(j ∧q) hold
at the state named by i, and that the state j , where q holds, is reachable
via the modal relation F; equivalently, it states that node i is labeled by p,
and that node j , labeled by q, is reachable from i via an arc labeled F .

In HLDS, hybrid logic is used as a language for describing discourse
representation structures – which have their own underlying semantics, as
we explain further in section 6 – as follows. Each semantic head is asso-
ciated with a nominal that identifies its discourse referent, and heads are
connected to their dependents via dependency relations, which are modeled
as modal relations. As an example, the sentence Ted adores a musician that
Bob saw receives the represention in (7):

(7) @e(adore∧〈tense〉pres∧
〈Exp〉(t ∧Ted)∧
〈Cont〉(m∧musician∧〈def〉-∧

〈GenRel〉(e2 ∧ see∧〈tense〉past∧
〈Perc〉(b∧Bob)∧
〈Phen〉m)))

In this example, e is a discourse referent for the event of adoring, which
takes place in the present. It is related to t , the discourse referent for
Ted, by the Exp(eriencer) role, and to m, the indefinite discourse refer-
ent for the musician, via the Cont(ent) role. The referent m is in turn
related to e2, the discourse referent for the past event of seeing, via the
Gen(eral)Rel(ation) dependency role. Finally, the referent e2 is related
to b, for Bob, and back to m, by the dependency roles Perc(eiver) and
Phen(omenon), respectively.4

The HLDS term in (7) is isomorphic to the underlying graph depicted in
Figure 1 (see section 6 for discussion of such graphs). It may also be flat-
tened to an equivalent (but no longer isomorphic) conjunction of fixed-size

adore<TENSE>prese

<EXP> <CONT>

Ted t

<GENREL>

see<TENSE>paste2

<PERC>

Bob b

<PHEN>

musician<DEF>-m

Figure 1. Underlying structure of Ted adores a musician that Bob saw.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 45

elementary predications (EPs), which together describe the same underlying
graph structure:

(8) @eadore∧@e〈tense〉pres∧@e〈Exp〉t ∧@e〈Cont〉m∧
@tTed∧@mmusician∧@m〈def〉-∧@m〈GenRel〉e2 ∧
@e2see∧@e2〈tense〉past∧@e2〈Perc〉b∧@e2〈Phen〉m∧
@bBob

As (8) shows, EPs come in three varieties: lexical predications, e.g. @e

adore; semantic features, e.g. @e〈tense〉pres; and dependency relations,
e.g. @e〈Exp〉t . When flattened, the HLDS representations resemble the
neo-Davidsonian ones used in e.g. Kay’s (1996) work on chart realization:

(9) adore(e)∧ tense(e,pres)∧Exp(e, t)∧Cont(e,m)∧
Ted(t)∧musician(m)∧def(m, -)∧GenRel(m, e2)∧
see(e2)∧ tense(e2,past)∧Perc(e2, b)∧Phen(e2,m)∧
Bob(b)

In contrast to (9), the HLDS representation in (8) makes the head-
dependent distinction explicit; (8) also has an equivalent hierarchical rep-
resentation, (7), which the neo-Davidsonian one lacks.

3. Semantic Construction

To facilitate realization from HLDS terms, we have slightly changed
Baldridge and Kruijff ’s (2002) approach to semantic construction to one
which uses maximally flat representations such as (8). In our revised
approach, categories consist of syntactic categories (atomic or complex)
paired with logical forms, in the form of a conjunction of elementary pred-
ications; such categories are then paired with strings in the lexicon to form
signs, as shown in (10). Each atomic category has an index feature, which
makes a nominal available for capturing syntactically induced dependencies;
these indices are shown as subscripts on the category labels (with feature
names suppressed).

(10) a. a � npx/nx : @x 〈def〉-
b. musician � nm : @mmusician
c. that � (nx\nx)/(se, f in|npx) : @x 〈GenRel〉e
d. Bob � npb : @bBob
e. saw � se, f in\npx/npy : @esee∧@e〈tense〉past∧

@e〈Perc〉x ∧@e〈Phen〉y
In derivations, applications of the combinatory rules coindex the appro-

priate nominals via unification on the categories, and the EPs are then con-
joined to form the resulting interpretation. For example, as in derivation
(4), the sign for Bob in (10) can type-raise and compose with the one for

46 M. WHITE

saw to yield (11), where x has been coindexed with b, and where the EPs
have been conjoined. The sign for that can then apply to (11), yielding (12),
where the EPs have again been conjoined and y has been coindexed with
x.5 Finally, successive applications of (12) to the sign for musician, and of
the sign for a to the intermediate result, yield (13):

(11) Bob saw � se, f in/npy : @esee∧@e〈tense〉past∧@e〈Perc〉b∧
@e〈Phen〉y ∧@bBob

(12) that Bob saw � nx\nx : @x〈GenRel〉e∧@esee∧
@e〈tense〉past∧@e〈Perc〉b∧@e〈Phen〉x ∧@bBob

(13) a musician that Bob saw � nm : @mmusician∧@m〈def〉-∧
@m〈GenRel〉e∧@esee∧@e〈tense〉past∧@e〈Perc〉b∧
@e〈Phen〉m∧@bBob

An important property of additive approaches to semantic construction,
such as ours, is that no semantic information can be dropped during the
course of a derivation – that is, semantic construction is guaranteed to
be monotonic. In the absence of this property, it becomes more difficult
to ensure that one’s realization algorithm is complete, as Copestake et al.
(2001) discuss.

A benefit of employing flat representations in semantic construction is
that it becomes easier to perform equality tests on signs, since the flat con-
junctions of EPs, once sorted into a canonical order, can be straightfor-
wardly employed in a hashing scheme. In our case, we use such equality
tests to avoid adding duplicate entries into the chart when there are multi-
ple equivalent derivations for a given sign, thereby alleviating the problem
of so-called “spurious” ambiguity (Steedman, 2000b).

A final benefit of simply conjoining EPs in derivations is that it avoids
unwanted copying of predications in coordinate constructions.6 For exam-
ple, the EPs for the shared argument a musician that Bob saw in the right
node raising example (5) appear just once in the resulting logical form,
shown in hierarchical form below in (14) for readability, and with most of
the predications of (13) suppressed (the dependency roles are Pos(itive),
Neg(ative), Exp(eriencer), Cont(ent)):

(14) @s(but∧
〈Pos〉(e1 ∧adore∧〈tense〉pres∧

〈Exp〉(t ∧Ted)∧
〈Cont〉m)∧

〈Neg〉(e2 ∧detest∧〈tense〉pres∧
〈Exp〉(g ∧Gil)∧
〈Cont〉m))∧

@m(musician∧ . . .)

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 47

In contrast, Baldridge and Kruijff ’s (2002) approach yields duplicate
predications in such examples. In their approach, Ted adores but Gil detests
ends up with the semantics given in (15) below, where the proposition p

appears twice; consequently, when the coordinated phrase is combined with
the shared argument a musician that Bob saw, the predications in (13) are
copied into the two locations where p appears.

(15) @s(but∧
〈Pos〉(e1 ∧adore∧〈tense〉pres∧

〈Exp〉(t ∧Ted)∧
〈Cont〉(m∧p))∧

〈Neg〉(e2 ∧detest∧〈tense〉pres∧
〈Exp〉(g ∧Gil)∧
〈Cont〉(m∧p)))

As we will show in section 5, by avoiding such duplicate predications, the
present approach to semantic construction keeps the output of the parser
in line with the expected input of the realizer.

4. The Algorithm

4.1. Input

The input to the algorithm is a logical form encoded as an HLDS term,
such as the one for a musician that Bob saw below, together with a function
that computes n-gram scores of possible realizations. Optionally, the algo-
rithm may also take a function implementing a custom pruning strategy as
an argument; the default, n-best pruning strategy keeps the n best-scoring
edges per group of edges with equivalent categories in the chart, for a con-
figurable parameter n.

(16) @m(musician∧〈def〉-∧
〈GenRel〉(e∧ see∧〈tense〉past∧

〈Perc〉(b∧Bob)∧
〈Phen〉m))

Although in principle the contents of HLDS terms like (16) may vary
considerably in the extent to which they precisely specify particular sur-
face forms, we have chosen to employ a relatively low level of abstraction
in our input LFs, in order to provide a high degree of control over the
results of realization. As Elhadad and Robin (1998) point out, practical expe-
rience with reusable realizers such as their FUF/SURGE and Lavoie and
Rambow’s (1997) RealPro has shown that applications often demand consid-
erable control over lexical and syntactic choices, mostly leaving the realizer
to just handle inflection, agreement, word order and insertion of function

48 M. WHITE

words. In accord with this observation, in our approach, lexical and syn-
tactic choices are primarily governed by the lexical predicates and semantic
features that the client application has selected for inclusion in the realizer’s
input logical form.7 While it could prove desirable with some applications
to defer more decision making to the realizer – perhaps via greater use of
underspecification in the input, or explicitly listed alternatives – we leave the
question of how to do so in a practical way as a topic for future research.

4.2. Chunking and flattening

In a preprocessing stage, chunking rules are applied to the input LF, which
is subsequently flattened. The chunking rules serve to identify sub-problems
to be solved independently prior to further combination. They address the
problem, noted by Kay (1996), that chart realization algorithms can waste
a great deal of time on generation paths containing semantically incom-
plete phrases (see section 4.6 for discussion).

The chunking rules together specify a transformation, κ, for adding
chunks to an HLDS term. The default rules appear in (17) below, in order
of increasing priority; grammar-specific exceptions to the default rules are
discussed in section 4.6.

(17) a. κ(x)=x

κ(label)= label
κ(〈attr〉val)=〈attr〉val

b. κ(@x(. . .))=@x(κ(. . .))

κ(〈Rel〉(. . .))=〈Rel〉(κ(. . .))

κ(. . .1 ∧ . . .∧ . . .n)=κ(. . .1)∧ . . .∧κ(. . .n)

c. κ(. . .1 ∧ . . . 〈Rel〉(x ∧ . . .) . . .∧ . . .n)

= [cκ(. . .1)∧ . . . κ(〈Rel〉(x ∧ . . .)) . . .∧κ(. . .n)]

The first two clauses of (17) just recursively copy the input term. The
third clause takes precendence over the second one, and introduces a chunk
for non-trivial subtrees.

When applied to the LF in (16), the chunking rules identify the predi-
cates that specify the relative clause as forming an independent sub-problem,
chunked as c1 below:

(18) @m(musician∧〈def〉-∧
〈GenRel〉([c1e∧ see∧〈tense〉past∧

〈Perc〉(b∧Bob)∧
〈Phen〉m]))

More complex logical forms will often be chunked into multiple indepen-
dent sub-problems, some of which may be nested.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 49

After the chunking rules have been applied, the logical form is flattened
to a list of EPs, so that the extent to which partial realizations cover the
input LF can be tracked positionally. In this process, the set of EPs that
make up each chunk is also determined. For example, the LF in (18) is flat-
tened to (19), with the constituents of chunk c1 identified in (20):

(19) 0: @mmusician, 1: @m〈def〉-, 2: @m〈GenRel〉e,
3: @esee, 4: @e〈tense〉past, 5: @e〈Perc〉b, 6: @e〈Phen〉m,

7: @bBob

(20) c1: {3,4,5,6,7}

4.3. Data structures

The algorithm makes use of four principal data structures: edges, unary
rule instances, an agenda, and a chart. An edge is a CCG sign plus the fol-
lowing bookkeeping data structures: a bit vector which records the sign’s
coverage of the input LF; a bit vector with the sign’s indices (nominals)
that are syntactically available; and a list of incomplete chunks. The bit
vectors make it possible to instantly check whether two edges cover dis-
joint parts of the input LF, and whether they have any indices in common.
The list of incomplete chunks is used to prevent combinations with edges
that do not contribute to completing these chunks. That is, if an edge has
one or more incomplete chunks listed for it, then it is only allowed to com-
bine with edges whose predicates (if any) intersect with all the incomplete
chunks; combinations with semantically null edges are also permitted.

To illustrate these data structures, the edges for the finite past and
non-finite forms of see are given below, with the bit vectors for the EPs
and indices shown in braces, and the list of incomplete chunks (here, just c1)
in square brackets:

(21) {3,4,5,6}, {e, b,m}, [c1],
saw � se, f in\npb/npm : @esee∧@e〈tense〉past∧@e〈Perc〉b∧
@e〈Phen〉m

(22) {3,5,6}, {e, b,m}, [c1],
see � se, nonf in\npb/npm : @esee ∧@e〈Perc〉b∧@e〈Phen〉m

Unary rule instances are instantiations of the unary type changing rules
for particular input EPs. Like edges, they have bit vectors for the EPs and
indices, but there is no need for a list of incomplete chunks:

(23) {2}, {e,m}, se, f in|npm ⇒ nm\nm : @m〈GenRel〉e

50 M. WHITE

The agenda is a priority queue of edges which manages the edges that
have yet to be added to the chart. Using the agenda makes it easy to vary
the search order by changing the edge scoring function.

The chart is a collection of edges that enables a dynamic programming
search for realizations. Whereas a chart for parsing uses string positions to
track the extent of partial parses, a chart for realization uses an edge’s cover-
age vector to track partial realizations. Similarly, whereas a chart for parsing
uses string adjacency to determine which edges to try to combine, a chart
for realization uses intersecting indices to implement a corresponding notion
of graph adjacency in the input logical forms.

To improve efficiency, the chart maintains a hash set of edges in order
to check in constant time whether a new edge is equivalent to one already
in the chart. It also maintains a hash map from categories to sets of edges
that share the same category but differ in their surface strings, for pruning
purposes. Note that category equivalence requires that two categories have
exactly matching syntactic categories and matching conjunctions of elemen-
tary predications in their LFs.

4.4. Lexical lookup

In the first phase of the algorithm, for each EP in the flattened input LF,
relevant lexical entries are accessed according to an indexing scheme which
records the most informative part of each lexical item’s semantics. Most
lexical items are indexed by the principal lexical predicate which they intro-
duce. However, if a lexical item (e.g. a relative pronoun) only introduces
a dependency relation or a semantic feature, it is indexed by the relation
or feature. Semantically null lexical items, i.e. ones which introduce no EPs
(e.g. infinitival to), are not indexed at all; instead, they receive special han-
dling in the combinatory rule phase (see step 6 in Figure 2, p. 51).8 To
improve performance, the semantically null entries are pre-filtered for rel-
evance; in particular, case marking prepositions and particles are only con-
sidered when there is a matching feature on one of the indexed lexical items
indicating that they may be needed.

Once a lexical entry indexed by the current EP has been accessed, instan-
tiation is attempted. During instantiation, the current EP is first unified
with one of the lexical entry’s EPs, and then unification of the remaining
EPs in the lexical entry is attempted against the remaining EPs in the input
LF.9 If the lexical entry contains an incompatible semantic feature or rela-
tion, then instantiation fails. If instantiation succeeds, an edge is created
for the instantiated entry and added to the agenda. In creating the edge,
the chunks of EPs for the input LF are consulted, and any chunks which
partially overlap with the edge’s coverage vector are listed as incomplete
chunks for the edge.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 51

Until the agenda is empty:

1. Check whether the time limit for the anytime search has been exceeded. If so, return
the best complete edge found so far (if any, otherwise continue).

2. Remove the first edge from the agenda and set it to be the current edge.
3. Check whether the current edge is equivalent to one already in the chart, or fails

to meet the pruning threshold. If so, skip the rest of the loop.
4. Combine the current edge with the edges already on the chart. More specifically, for

each chart edge:
(a) Check the coverage bit vectors for the current edge and the chart edge for

intersection. If they overlap, skip the chart edge.
(b) Check the index bit vectors for intersection. If they do not overlap, only com-

bine the current edge with the chart edge if the input LF contains an appro-
priate tuple (cf. section 5 for discussion).

(c) Check that all incomplete chunks for the current edge intersect with the chart
edge’s coverage vector, and vice-versa. If not, skip the chart edge.

(d) Combine the current edge with the chart edge using all available binary com-
binatory rules.

(e) Add any resulting new edges to the agenda, updating the reference to the best
complete edge found so far (if any).

5. Apply all unary combinatory rules to the current edge, likewise adding any result-
ing new edges to the agenda. With the unary rule instances, the same checks on the
coverage vector, the index vector and the incomplete chunks are performed, as if the
rule instance were a chart edge.

6. Combine the current edge with edges for all semantically null lexical items, as if
these were chart edges (except that there are no EPs to check), likewise adding any
resulting new edges to the agenda.

7. Add the current edge to the chart. If the number of edges with the same category
exceeds the pruning threshold, prune the lowest scoring edge in this group from the
chart.

Return the best scoring edge.

Figure 2. Main loop.

With unary type changing rules, lookup and instantiation is handled in
much the same way. For each EP in the input logical form, instantiation
is attempted with any unary rules that are indexed by this EP. Successfully
instantiated rules, together with those unary type changing rules that have
empty semantics, are added to the list of unary rules to be used in the der-
ivation (see step 5 in Figure 2).

Continuing our example, the predicational EP @esee triggers the lookup
of the lexical entries for the edges shown in (21) and (22). Note that
the present tense form sees is accessed as well, but instantiation fails due
to its incompatible tense value (whereas the non-finite form see has no
tense value). The predicational EPs @mmusician and @bBob likewise trig-
ger entries for musician and Bob. The relational EP @m〈GenRel〉e triggers
the lookup and instantiation of the edge for the relative pronoun shown in

52 M. WHITE

(24) below, in addition to the unary rule instance seen earlier in (23). Simi-
larly, the featural EPs @e〈tense〉past and @m〈def〉-trigger the introduction
of the auxiliary did and the indefinite determiner a.

(24) {2}, {e,m}, [], that � (nm\nm)/(se, f in|npm) : @m〈GenRel〉e
In its current form, the lexical lookup phase of the algorithm assumes that

all the EPs in a lexical entry can be uniquely instantiated starting from the
indexed EP. This simplifying assumption imposes some minor limitations on
the EPs that are allowed to appear in a lexical entry; in particular, the EPs
are required to specify a connected sub-graph with unique dependency roles.

4.5. Application of combinatory rules

In the second, main phase of the algorithm – at a high level – edges are
successively moved from the agenda to the chart and combined with the
edges already on the chart, with any resulting new edges added to the
agenda, until no more combinations are possible and the agenda becomes
empty, or until the time limit for the anytime search is exceeded. In terms
of standard chart parsing/realization terminology, all edges are passive
(rather than active), since they represent complete constituents in CCG.
Figure 2 describes the main loop in full detail, including the various con-
straints used to cut down the search space.

Some of the edges generated during the combinatory rule phase are shown
in (25)–(35) below, with the EPs suppressed. The edge for Bob type-raises,
yielding (25), and the edge for a applies to musician to yield (26). The edge
for see (22) combines with the semantically null infinitival to, yielding (27);
(25) then forward composes with both saw (21) and to see (27), yielding
(28) and (29). Since Bob to see (29) is marked syntactically as infinitival
rather than finite, it will not unify with the relative pronoun edge (24), which
instead applies only to Bob saw (28), yielding (30). The unary rule instance
for reduced relatives (23) also applies to (28), yielding (31). Finally, the rela-
tive clause (30) and reduced relative (31) apply to musician yielding (32) and
(33), which are then combined with a to yield the complete edges in (34) and
(35), with the choice between these forms left to the n-gram scoring function
to decide.

(25) {7}, {b}, [c1], Bob � s1/(s1\npb)

(26) {0,1}, {m}, [], a musician � npm

(27) {3,5,6}, {e, b,m}, [c1], to see � (se, inf \npb)/npm

(28) {3,4,5,6,7}, {e,m}, [], Bob saw � se, f in/npm

(29) {3,5,6,7}, {e,m}, [c1], Bob to see � se, inf /npm

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 53

(30) {2,3,4,5,6,7}, {m}, [], that Bob saw � nm\nm

(31) {2,3,4,5,6,7}, {m}, [], Bob saw � nm\nm

(32) {0,2,3,4,5,6,7}, {m}, [], musician that Bob saw � nm

(33) {0,2,3,4,5,6,7}, {m}, [], musician Bob saw � nm

(34) {0,1,2,3,4,5,6,7}, {m}, [], a musician that Bob saw � npm

(35) {0,1,2,3,4,5,6,7}, {m}, [], a musician Bob saw � npm

As the example shows, the rules apply in bottom-up fashion to reproduce
the same derivation that would be used in parsing the sentence. The bit
vectors help to improve efficiency by avoiding certain combinations with-
out attempting unification; for example, no attempt is made to combine the
edges for saw and to see, since these overlap semantically, and no attempt
is made to combine Bob and a musician, since their index vectors do not
intersect.

The chunking constraints introduce an element of top-down prediction
to the algorithm, by avoiding combinations that are not compatible with
the constituent boundaries implicit in the grouped EPs. For example, since
the edge for the verb saw has c1 as an incomplete chunk, it is not allowed
to combine with the edge for a musician. It is possible to improve efficiency
further via more top-down prediction, e.g. to avoid generating the edges to
see and Bob to see, which do not participate in any complete derivation; to
that end, a more advanced scheme for using features to license and instan-
tiate semantically null categories is proposed in White (2004).

4.6. The problem of semantically incomplete phrases

The main purpose of the chunking rules is to avoid a proliferation of
semantically incomplete edges. As Kay (1996) points out, chart realiza-
tion in its naı̈ve form will generate sentences for all subsets of the predi-
cates corresponding to syntactically optional modifiers, only one of which
is semantically complete. For example, with his sentence (36), there will be
edges for syntactically complete sentences corresponding to all subsets of
the modifiers newspaper, fast, tall, young, and Polish, yielding a grand total
of 32 strings, 31 of which are useless:

(36) Newspaper reports said that the tall young Polish athlete ran fast.

Kay’s (1996) approach to this problem is to avoid creating edges that
would prevent access to a semantic index for which there remain unincor-
porated modifiers. For example, the index for athlete becomes unavailable
once the embedded subject combines with ran, so edges like the athlete ran,
which do not include all the modifiers of athlete, will be avoided. As a

54 M. WHITE

result, this strategy helps to ensure that only semantically complete phrases
are incorporated into larger phrases.

As an alternative to Kay’s approach, Carroll et al. (1999) propose to
delay the insertion of all intersective modifiers until the rest of the chart
has been completed, and then to add them via adjunction. An advantage
of their solution over Kay’s is that it further reduces unwanted edges by
avoiding extra intermediate results. However, it is unclear how well delaying
the handling of intersective modifiers until the end would fit with our
anytime approach to realization, and for this reason we have not pursued
their solution.

The chunking rules similarly keep semantically incomplete phrases from
proliferating, though in a more fine-grained and flexible way that is better
suited to CCG than Kay’s approach. As we saw in the preceding section,
the chunking rules can cut down the search space not just with syntac-
tically optional modifiers, but also with “non-standard” constituents such
as s/np – both in relative clauses and coordinate structures (cf. section 5).
They can also cut off the proliferation of semantically incomplete phrases
earlier than would Kay’s approach. For example, in CCG, subject NPs can
type raise and compose with pre-verbal modifiers, such as also, yielding a
category where the subject’s semantic index is still accessible. In this case,
Kay’s filter would not prevent a semantically incomplete subject NP from
combining with also; in contrast, the chunking rules could easily do so, by
identifying the subject’s EPs as a chunk.

As mentioned in section 4.2, the default chunking rules must be accom-
panied by a handful of grammar specific exceptions, in order to handle cer-
tain cases where the semantic and syntactic structures diverge. For example,
an exception must be made with VP negation. Consider the following LF
for Bob did not see the musician:

(37) @s(not∧〈tense〉past∧
〈Scope〉(e∧ see∧

〈Perc〉(b∧Bob)∧
〈Phen〉(m∧musician∧〈def〉+)))

Here the subtree under 〈Scope〉 cannot be chunked, as this would pre-
vent not from combining with the verb phrase see the musician, whose
semantics does not include the EP for the subject Bob. Exceptions to the
default rules are typically based on particular predicates or dependency
relations, and are given higher priority. The rule for VP negation appears in
(38) below; it overrides (17c) and simply reverts to the basic term copying
behavior, as in (17b):

(38) κ(. . .1 ∧not∧ . . . 〈Scope〉(x ∧ . . .) . . .∧ . . .n)=
κ(. . .1)∧not∧ . . . 〈Scope〉(x ∧κ(. . .)) . . .∧κ(. . .n)

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 55

In our experience to date, it has not been too onerous to identify the
handful of cases where exceptions to the default chunking rules have been
required. Using the OpenCCG regression testing tool and a reasonably
comprehensive regression test suite, one can look for examples which parse
successfully but fail to realize with chunking turned on. Then, for each
problematic example, one can examine a detailed realization trace to see
where the desired derivation has been blocked, and add an exception rule
like (38) to avoid inserting a chunk in the problematic context.

4.7. The problem of relatively free word order

While the chunking rules cut down the search space by keeping seman-
tically incomplete phrases from proliferating, a grammar may still license
an exponential number of phrases for a given input – especially when, for
engineering reasons, the grammar is intentionally allowed to overgenerate,
in order to take advantage of an n-gram scoring function’s ability to select
preferred word orders. For example, with prenominal modifiers such as tall,
young, and Polish, one can employ the simple syntactic category n/n and
leave the preferred ordering to the n-grams, rather than laboriously encod-
ing order preferences via syntactic features. However, this means that the
realizer will create 3! semantically complete phrases for the embedded sub-
ject in Kay’s example (36) – including the tall young Polish athlete as well
as the Polish young tall athlete – which will of course multiply the number
of larger phrases that incorporate these various possibilities.

The edge pruning and anytime search methods are designed to help
keep the realizer from getting bogged down in the face of relatively free
word order – which more typically occurs with intersective modifiers, but
may also arise from different lexico-syntactic choices, when these are left
underdetermined by the grammar and input LF. For example, assuming
that the n-gram scorer has access to appropriate training data, preferred
phrases such as the tall young Polish athlete will be prioritized ahead of
variants like the Polish young tall athlete on the agenda, leading eventu-
ally to the earlier emergence of complete realizations incorporating the pre-
ferred phrase. In fact, the dispreferred variants may never even reach the
front of the agenda, if the anytime search limit is exceeded prior to this
point, and a complete realization has already been found. Edge pruning
helps to further improve the situation, as it lessens the multiplicative effects
of the dispreferred variants (or better, their earlier sub-phrases).

It is worth pointing out that since edge pruning only takes place within
groups of edges sharing the same syntactic and semantic category, there is
no way that edge pruning can prevent the search from turning up any com-
plete realizations. In contrast, in our earlier attempts to prune edges from
the chart as a whole – without grouping edges in this way – we found it

56 M. WHITE

difficult to find a threshold that led to substantial pruning without causing
realization to fail on some examples.

5. Coordination

5.1. Clausal coordination

CCG’s flexible approach to constituency delivers derivations for a wide
variety of coordinate structures, including those involving the coordination
of “non-standard” constituents such as s/np, as we saw in the derivation
of the right node raising example (5), repeated in abbreviated form below:

(39) [Ted adores]s/np but [Gil detests]s/np a musician that Bob saw.

Examples like (39) can be handled using the category for but given in
(40), where s$ schematizes over functions into s:

(40) but � (ss$1\se1
$1)/se2

$1 : @sbut∧@s〈Pos〉e1 ∧@s〈Neg〉e2

Category (40) enables Ted adores and Gil detests to coordinate as follows,
where x fills the Cont(ent) role for both e1 and e2:

(41) Ted adores but Gil detests � ss/npx :
@sbut∧@s〈Pos〉e1 ∧@s〈Neg〉e2 ∧
@e1adore∧ . . .@e1〈Cont〉x ∧
@e2detest∧ . . .@e2〈Cont〉x

The coordinated constituent (41) can then combine with a musician that
Bob saw, unifying x with m, and yielding a flat conjunction of EPs equiv-
alent to (14):

(42) Ted adores but Gil detests a musician that Bob saw � ss :
@sbut∧@s〈Pos〉e1 ∧@s〈Neg〉e2 ∧
@e1adore∧ . . .@e1〈Cont〉m∧
@e2detest∧ . . .@e2〈Cont〉m∧
@mmusician∧ . . .

Since the present approach to semantic construction does not produce
duplicate EPs for the shared argument a musician that Bob saw, the output
of the OpenCCG parser for (39) is the same as what the realizer expects
as input. In contrast, the duplicate EPs that would arise with Baldridge
and Kruijff ’s Baldridge and Kruijff ’s (2002) approach to semantic construc-
tion – cf. (15) on p.10 – would cause problems for the realizer’s tracking of
input LF coverage. Indeed, the LF that would arise from (15) is perhaps
more similar to the one for the clause-level coordination in (43) below than
it is to (42):10

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 57

(43) Ted adores a musician that . . . but Gil detests a musician that . . .

� ss : @sbut∧@s〈Pos〉e1 ∧@s〈Neg〉e2 ∧
@e1adore∧ . . .@e1〈Cont〉m1 ∧
@e2detest∧ . . .@e2〈Cont〉m2 ∧
@m1musician∧ . . .∧@m2musician∧ . . .

The HLDS terms in (42) and (43) are not interchangeable as inputs to
the realizer – which is as desired, since (42) requires the same musician to
be adored and detested, whereas (43) strongly implicates that two differ-
ent musicians are involved. As such, these examples show how differences
in the realizer’s input logical form – which are reminiscent of the differ-
ences between reduced and unreduced λ-terms11 – can be used to control
the choice of coordination options made available by the grammar.12

The distinction between (42) and (43) naturally raises the question as to
what happens in similar examples involving quantification, first noted by
Geach (1972) and more recently discussed by Steedman (1999, 2003):

(44) [Every boy adores]s/np but [every girl detests]s/np a musician that
Bob saw.

In one reading of (44), there is a possibly different musician for each
boy or girl that is adored or detested. There is also another reading of (44)
where there is a specific musician that is adored or detested by each boy
or girl. There does not, however, seem to be a “mixed” reading, where a
specific musician is adored by each boy but a possibly different musician is
detested by each girl, or vice versa.

There is no problem with parsing or realizing (44); all that is needed
is the following category for every, which is semantically and syntactically
type-raised in the lexicon:13

(45) every � ss/(se\npx)/nx : @severy∧@s〈Restr〉x ∧@s〈Scope〉e
Category (45) leads to the following HLDS representation for (44), shown
in hierarchical form for readability:

(46) @s(but∧
〈Pos〉(s1 ∧ every∧

〈Restr〉(b∧boy)∧
〈Scope〉(e1 ∧adore∧〈tense〉pres∧

〈Exp〉b∧
〈Cont〉m))∧

〈Neg〉(s2 ∧ every∧
〈Restr〉(g ∧girl)∧
〈Scope〉(e2 ∧detest∧〈tense〉pres∧

〈Exp〉g ∧

58 M. WHITE

〈Cont〉m)))∧
@m(musician∧ . . .)

At first glance, the HLDS term in (46) would seem to require that there
is a specific musician m that is adored or detested by all boys and girls,
raising the question as to how the non-specific reading (with a possibly
different musician) is to be handled. However, in section 6, we will show
how a proper treatment of scope in the underlying graph structures enables
(46) to represent the non-specific reading, despite making use of a single
musician discourse referent m. We will also discuss how Geurts’s (2002)
proposal for handling specific indefinites in DRT could be used to derive
the specific reading, as well as how the shared musician node could pre-
vent the mixed reading from arising.

5.2. Distributive np coordination

Of the multiple possible readings involving NP coordination, we will only
focus on the distributive reading here. As Moore (1989) points out, NPs
such as Bob and Gil in (47) below pose a challenge for unification-based
approaches to semantic construction, since the index x cannot be unified
with the referents for both Bob and Gil:14

(47) [Ted adores]se/npx
Bob and Gil.

Following Moore’s strategy, we tackle this problem by introducing a
bound variable into the semantic representation for (47):

(48) @s(and∧
〈BoundVar〉x ∧
〈List〉(e1 ∧ elem∧

〈Item〉(b∧Bob)∧
〈Next〉(e2 ∧ elem∧

〈Item〉(g ∧Gil)))∧
〈Pred〉(e∧adore∧〈tense〉pres∧

〈Exp〉(t ∧Ted)∧
〈Cont〉x))

In (48), the relations 〈List〉, 〈Item〉, and 〈Next〉 encode a linked list.
Each item in the list is wrapped by an elem(ent) nominal, where 〈Item〉
points to the item itself, and 〈Next〉 points to the next element in the list,
if any. 〈List〉 points to the first element in the list.

As we will explain further in section 6, the HLDS term in (48) is
intended to be equivalent to the conjunction of the terms formed by dis-
tributing the predicate Ted adores x across each member of the two item
list Bob and Gil, as indicated in (49):

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 59

(49)
∧

x∈[b:Bob, g:Gil] e : Ted adores x

In parallel fashion, the HLDS term for Ted adores Bob or Gil – i.e., (48)
with and replaced by or – is is intended to be equivalent to the disjunction
of the terms formed by distributing the predicate Ted adores x across each
member of the two item list Bob and Gil:

(50)
∨

x∈[b:Bob, g:Gil] e : Ted adores x

With (48) as the target semantics, example (47) can be parsed and real-
ized using the category given in (51), which takes the two coordinated NPs
and forms a (backwards) type-raised NP reminiscent of the category for
every seen in (45):

(51) and � ss$\(se$/npx)\npx1
/npx2

: @sand∧@s〈BoundVar〉x ∧
@s〈List〉e1 ∧@s〈Pred〉e∧@e1elem∧@e1〈Item〉x1 ∧
@e1〈Next〉e2 ∧@e2elem∧@e2〈Item〉x2

As an alternative to using the category in (51), one could in principle locate
the distributivity in the semantics of verbs taking plural NPs as arguments, as
proposed in Steedman (2003), and treat conjoined NPs as simply introducing
a set referent. By doing so, one could prevent scope-inverting readings for
sentences like Some fan adores Bob and Gil – in which a possibly different fan
adores each of the musicians Bob and Gil – from arising, which do not seem
to be available empirically. However, since such an approach would make it
more difficult to come up with a parallel treatment of or, we have chosen
to implement a more traditional approach to distributive NP coordination
here.

It is possible to generalize the category in (51) to handle lists of arbitrary
length. One way to do so is to split (51) into two parts, one that connects
the last two items in the list and adds the boolean operator, and another
that uses a unary rule to close off the list and type-raise the result. In
addition, a category for the comma may be used to connect the remaining
items in the list, as well as to thread the nominal for the boolean operator
down to the conjunction. To accomplish this threading, we introduce an
op-index feature to hold another nominal – the one for the boolean oper-
ator – in addition to the one held by the usual index feature. In the cate-
gories below, npconj is used as the category for incomplete lists; also, the
values for the index feature are paired with the values for the op-index fea-
ture (with feature names still suppressed):15

(52) and � npconje1, s
\npx1

/npx2
: @sand∧@e1elem∧@e1〈Item〉x1 ∧

@e1〈Next〉e2 ∧@e2elem∧@e2〈Item〉x2

(53) , � npconje1, s
\npx1

/npconje2, s
: @e1elem∧@e1〈Item〉x1 ∧

@e1〈Next〉e2

60 M. WHITE

(54) npconje1, s
⇒ss$\(se$/npx) : @s〈BoundVar〉x ∧@s〈List〉e1 ∧

@s〈Pred〉e
A similar approach can also be taken to generalize conjunction at the

clause level to lists of arbitrary length, using sconj as the category for incom-
plete lists.

5.3. Argument clusters and gapping

The approach to distributive NP coordination presented above can be
extended to handle argument clusters – as in (55) below – without the need
to invoke otherwise unnecessary deletion operations.

(55) [Bob gave]se/npy/npx
[Tedt a dogd]s\(s/npd/npt) and

[Gilg a catc]s\(s/npc/npg)

To handle (55), we introduce tup(le) elements to connect pairs of NP ref-
erents and bound variables, in the following category for and :

(56) and �
(ss$\(se$/npy/npx))\(s$\(s$/npy1

/npx1
))/(s$\(s$/npy2

/npx2
)) :

@sand∧@s〈BoundVar〉t ∧@s〈List〉e1 ∧@s〈Pred〉e∧
@t tup∧@t〈Item1〉x ∧@t〈Item2〉y ∧
@e1elem∧@e1〈Item〉t1 ∧@e1〈Next〉e2 ∧
@t1 tup∧@t1〈Item1〉x1 ∧@t1〈Item2〉y1 ∧
@e2elem∧@e2〈Item〉t2 ∧
@t2 tup∧@t2〈Item1〉x2 ∧@t2〈Item2〉y2

Category (56) enables (55) to be parsed into a semantic representation
analogous to (48). The resulting logical form is intended to be equivalent
to the conjunction of the terms formed by distributing the predicate Bob
gave xy across each pair 〈x, y〉 in the list consisting of the pairs 〈Ted, a
dog〉 and 〈Gil, a cat〉, as sketched in (57):

(57)
∧

〈x,y〉∈[〈t :Ted, d:a dog〉, 〈g:Gil, c:a cat〉] e : Bob gave x y

The derivation of (55) requires the base NPs Tedt and a dogd to type
raise and compose together into the category s\(s/npd/npt), as indicated
(and similarly for Gilg and a catc). Reversing this derivation during real-
ization thus requires Tedt and a dogd to combine, even though they have
no indices in common. Since removing the index intersection filter from
the realization algorithm entirely could let all NPs combine via type raising
and composition in all possible orders, we instead require the indices to be
in an appropriate tuple in the input LF in order for the NPs to combine
(cf. step 4b in Figure 2).

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 61

To handle gapping examples like (58), a similar category can be supplied
for and, as shown in (59) without the semantics, which remains unchanged:

(58) Tedt receivedse\npx/npy
a dogd and [Gilg a catc]s\(s\npg/npc)

(59) and � ss\npx1
\(se\npx/npy)\npy1

/(s\(s\npx2
/npy2

))

Category (59) combines first with the pair of NPs Gil a cat on the right,
then successively with the NP a dog, the transitive verb received and the
NP Ted on the left. As such, it handles gapping without appealing to
reanalysis, as in Steedman (2000b), though at the expense of requiring and
to coordinate unlike categories, suggesting that (59) should be viewed as a
compiled-out version of Steedman’s approach to gapping.

The argument cluster category (56) can be generalized to handle longer
lists of tuples, following the patterns in (52)–(54), and using the category
sconje1, s

$\(s$/np/np) as the category for incomplete lists. The gapping cate-
gory (59) can be similarly generalized, though the first tuple requires special
treatment, in that it must be handled in the unary rule analogue of (54).

5.4. Chunking and coordination

There are two ways in which the chunking rules interact with coordination.
First, in order to realize examples involving shared arguments in coordinate
structures, the shared arguments must be raised to the same level as the
node for the conjunction. For example, with the right node raising exam-
ple (5), Ted adores but Gil detests a musician that Bob saw, the predications
for the shared argument a musician that Bob saw must appear at the same
level as the ones for but, as shown in (14), repeated below as (60):

(60) @s(but∧
〈Pos〉(e1 ∧adore∧〈tense〉pres∧

〈Exp〉(t ∧Ted)∧
〈Cont〉m)∧

〈Neg〉(e2 ∧detest∧〈tense〉pres∧
〈Exp〉(g ∧Gil)∧
〈Cont〉m))∧

@m(musician∧ . . .)

If instead the predications on the nominal m appeared under e1 (or
similarly for e2), the default subtree chunking rule would prevent Ted
adores from combining with Gil detests, as the edge for Ted adores would
be considered incomplete; in this situation, the sub-tree under e1 would
only be considered complete when the edge for Ted adores a musician that
Bob saw was generated – but this edge does not participate in the requi-
site derivation. In contrast, with (60) as the input (as desired), the chunk-

62 M. WHITE

ing rules ensure that the edge for Ted adores but Gil detests is complete
before allowing it to combine with the edge for a musician that Bob saw,
and prevent unwanted edges such as Ted adores a musician that Bob saw
from being generated.16

The second way in which the chunking rules interact with coordination
involves the gapping category (59). Since this category requires the first pair
in a list of paired items to be realized discontinuously, an exception rule
must be added that avoids chunking the first pair of items into an inde-
pendent sub-problem. Like (38), this rule overrides (17c) and just reverts
to the basic term copying behavior.

6. Translation to DRT

The HLDS representations proposed in the preceding section rely on quan-
tificational structures involving bound variables. To clarify the intended
semantics of these representations, we provide below a translation from the
graph structures underlying the HLDS terms – where the requisite notion
of logical scope becomes clear – to the more familiar discourse representa-
tions structures (DRSs) of DRT (Kamp and Reyle, 1993). In principle, of
course, a semantics for the structures described by the HLDS terms could
be given directly, rather than indirectly via DRT. To do so, however, one
would need to extend the model-theoretic semantics of HLDS given by
Kruijff (2001, 2003) to handle quantificational structures, a topic which is
beyond the scope of this paper.

6.1. Basic translation

The graph in Figure 1 (p. 44) depicts the structure underlying the logical
forms in (7) and (8) for the sentence Ted adores a musician that Bob saw.
Such graphs include nodes with labeled, directed arcs between them. Nodes
themselves have an ID, a label and a set of features.17

The graphs of interest may be considered essentially acyclic, if we view
cycles as involving arcs that point backwards from the perspective of a dis-
tinguished root node. For example, in Figure 1, the Phen(omenon) role may
be viewed as a back reference to m from e2. While the graphs are primarily
tree structured, they may involve shared nodes, as we will see below.

The DRT representation for the graph in Figure 1 appears in (61) below.
The DRS in (61) uses the concise linear notation for DRSs found in e.g.
Muskens’s compositional reformulation of DRT (Muskens, 1996), rather
than the bulkier, two-dimensional boxes in Kamp and Reyle (1993). In this
notation, a box is represented by a pair of square brackets, and contains a
list of discourse referents separated by a vertical bar from a list of condi-
tions. The merge of two boxes may also be specified using a semi-colon.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 63

(61) [e, t,m, e2, b|
adore(e), tense(e,pres), Exp(e, t), Cont(e,m),

Ted(t),

musician(m), def(m, -),GenRel(m, e2),

see(e2), tense(e2,past), Perc(e2, b), Phen(e2,m),

Bob(b)]

The graph in Figure 1 may be translated to the DRS in (61) using the
function τ defined in (62) below. The function τ takes as arguments a node
x and a reference (not shown) to the location where the resulting DRS is
to appear, so that the currently accessible discourse referents can be deter-
mined. To depict the relevant aspects of a node in the clauses for τ , we
use (parts of) the node’s HLDS description. The first clause covers the case
of a node corresponding to an accessible discourse referent; it just returns
an empty DRS. The second clause covers the case where there is no corre-
sponding accessible discourse referent. In this clause, the resulting DRS is
defined as a box that introduces x as new discourse referent, [x|], merged
with the translation of the node itself, τn(x), and the recursive translation
of the node’s relations, τr(x). The third clause defines the translation of a
node itself, τn(x), as the straightforward translation of the node’s label and
features into DRS conditions. The fourth clause defines the recursive trans-
lation of the node’s relations, τr(x), as a box containing the DRS condi-
tions for the arcs merged with the translations of each of the nodes reached
via these arcs.18

(62) a. τ(x)= [|], if x is accessible
b. τ(x)= [x|]; τn(x); τr(x), if x is not accessible
c. τn(x ∧ label∧〈attr1〉val1 ∧ . . .∧〈attrn〉valn)=

[|label(x),attr1(x,val1), . . . , attrn(x,valn)]
d. τr(x ∧〈Rel1〉x1 ∧ . . .∧〈Reln〉xn)=

[|Rel1(x, x1), . . . , Reln(x, xn)]; τ(x1); . . . ; τ(xn)

To illustrate the role of accessibility in the definition of τ , let us consider
how the back reference to the musician node m in Figure 1 is handled.
In traversing the graph beginning with the root e, no nodes with accessi-
ble referents are encountered until m is visited for the second time. At this
point, the translation determined so far is equal to (61), as shown below:

(63) τ(e)= (61); τ(m)

Since m is accessible in (61), the first clause is chosen, and τ(m) in (63) is
simply translated as an empty box, which disappears when merged with (61).

To translate examples involving negation, universal quantification, and
coordination, additional clauses are required which take priority over the
basic translation clause (62). The clause for negation appears in (64); the

64 M. WHITE

clauses for universal quantification and coordination are given in the next
two subsections.

(64) τ(s ∧not∧〈Scope〉e)= [|¬τ(e)]

6.2. Universal quantifiers

Translation of sentences involving universal quantifiers, such as (65),
requires transforming the structures underlying HLDS representations like
(66) into DRSs with nested boxes, as in (67):

(65) Every boy adores a musician.

(66) @s(every∧
〈Restr〉(b∧boy)∧
〈Scope〉(e∧adore∧〈tense〉pres∧

〈Exp〉b∧
〈Cont〉(m∧musician∧〈def〉-)))

(67) [|[b|boy(b)]⇒ [e,m|adore(e), tense(e,pres),
Exp(e, b), Cont(e,m),

musician(m), def(m, -)]]

The desired result may be obtained using the following clause:

(68) τ(s ∧ every∧〈Restr〉x ∧〈Scope〉e)= [|τ(x)⇒ τ(e)]

Note that the discourse referent x introduced in the restriction becomes
accessible in the translation of the scope e, and thus the predicates attached
to x end up only in the antecedent of the resulting DRS.

The reading of example (65) shown in the resulting DRS (67) is the one
where there is a possibly different musician adored by each boy, as the
discourse referent m appears in the consequent box of the universal, and
is thus dependent on the discourse referent b appearing in the antecedent
box. Likewise, the translation of the Geach example (44) yields the read-
ing where there is a possibly different musican adored by each boy and
detested by each girl. Figure 3 shows the structure described by the HLDS
representation (46) for (44); the result of the translation is shown in (69)
(treating but as a simple conjunction, for simplicity):

(69) [|[b|boy(b)]⇒ [e1,m|adore(e1), tense(e1,pres),
Exp(e1, b), Cont(e1,m),

musician(m), def(m, -), . . .],
[g|girl(g)]⇒ [e2,m|detest(e2), tense(e2,pres),

Exp(e2, g), Cont(e2,m),

musician(m), def(m, -), . . .]]

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 65

Since the scopes of the two universal quantifiers are independent, the
musician node gets translated twice, despite appearing just once in the
graph. The partial translation in (70) below shows that the discourse refer-
ent m in the consequent of the first universal is not accessible at the point
where m is encountered for the second time:

(70) τ(s)=
[|[b|boy(b)]⇒ [e1,m|adore(e1), tense(e1,pres),

Exp(e1, b), Cont(e1,m),

musician(m), def(m, -), . . .],
[g|girl(g)]⇒ [e2|detest(e2), tense(e2,pres),

Exp(e2, g), Cont(e2,m)]; τ(m)]

In contrast, with our original right node raising example (5), Ted adores
but Gil detests a musician that Bob saw, the musician node m is accessible
upon its second encounter, and thus the resulting DRS ends up with just
a single musican adored by Ted but detested by Gil:

(71) τ(s)=
[e1, t,m, e2, g|
adore(e1), tense(e1,pres),Exp(e1, t), Cont(e1,m),

Ted(t), musician(m), def(m, -), . . . ,

detest(e2), tense(e2,pres),Exp(e2, g), Cont(e2,m),

Gil(g)]; τ(m)

If the translations of the structures underlying (65) and (44) yield non-
specific readings, the question arises as to how the specific readings can be
accounted for. One possibility is offered by Geurts’s (2002) proposal to han-
dle both specificity and presupposition through a common pragmatic process
of backgrounding. In his proposal, both the raising of specific indefinites and
presupposition projection are governed by the buoyancy principle, whereby
backgrounded material tends to float up to the main DRS (subject to vari-
ous constraints and preferences). From the perspective of interpretation, the
backgrounding process begins with an initial DRS computed by the gram-
mar, such as (67) or (69), and optionally floats specific indefinites upwards,
yielding wide or intermediate scope readings, if pragmatically plausible. For
example, the result of floating the indefinite in (67) up to the main DRS
appears below:

(72) [m|musician(m),

[b|boy(b)]⇒ [e|adore(e), tense(e,pres),
Exp(e, b), Cont(e,m)]]

Geurts’s proposal appears to fit reasonably well with our approach, since
he takes specificity to be an essentially pragmatic phenomenon that is outside
of the syntax–semantics interface, where the scopes of true quantifiers are

66 M. WHITE

<CONT>

<EXP>

<SCOPE><SCOPE> <RESTR>

<NEG> <POS>

boy

but

<EXP>

s

every s1 everys2

<CONT>

<RESTR>

adore e1 detest e2 b girl g

…

musicianm

Figure 3. Underlying structure of Every boy adores but every girl detests a musician
. . . (that Bob saw).

determined. As such, his proposal could potentially be combined with our
approach to semantic composition to yield an account of the different read-
ings of indefinites; while the resulting account would not make use of Steed-
man’s (1999, 2003) anytime skolemization operation, it would otherwise be
essentially compatible with Steedman’s approach to handling quantifiers in
the syntax/semantics interface. One issue, however, is that applying Geurts’s
backgrounding process to the DRS translation in (69) of the Geach example
(44) could plausibly yield the missing “mixed” reading, whereby a specific
musician is adored by each boy but a possibly different musician is detested
by each girl, or vice versa. This suggests that backgrounding should instead
be applied to a discourse representation structure like the one in Figure 3,
where there is a single shared musician node, which must either be raised or
left in situ, with no possibility of a mixed reading arising.

6.3. List structures

Conjunctive list structures, such as the one seen in (48) for sentence (47),
Ted adores Bob and Gil, could be translated similarly to universal quantifi-
ers, as shown below (assuming an appropriate DRT element-of construct):

(73) [|[x, b, g|Bob(b), Gil(g), x ∈{b, g}]⇒
[e, t |adore(e), tense(e,pres), Exp(e, t), Cont(e, x), Ted(t)]]

As an alternative, the predication can be spelled out for each member
of the list, as in (74); this latter scheme has the advantage that it will also
work for disjunctive lists:19

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 67

(74) [x, b, e, t |x =b, Bob(b), adore(e), tense(e,pres),
Exp(e, t), Cont(e, x), Ted(t)];

[x, g, e, t |x =g, Gil(g), adore(e), tense(e,pres),
Exp(e, t), Cont(e, x), Ted(t)]

To translate (48) into (74), the following clause may be used:

(75) τ(s ∧and∧
〈BoundVar〉x ∧
〈List〉(e1 ∧ elem∧

〈Item〉x1 ∧
〈Next〉(. . . en ∧ elem∧〈Item〉xn . . .))

〈Pred〉e)=
[x|x =x1]; τ(x1); τ(e); . . . ; [x|x =xn]; τ(xn); τ(e)

For disjunctive lists, a similar clause may be given that connects
subordinate boxes with ∨.

Finally, to translate the pairs that arise with argument clusters and
gapping, as in examples (55) and (58), clause (75) may be augmented as
follows:

(76) τ(s ∧and∧
〈BoundVar〉x ∧
〈List〉(e1 ∧ elem∧

〈Item〉(t1 ∧ tup∧〈Item1〉x1 ∧〈Item2〉y1)∧
〈Next〉(. . . en ∧ elem∧

〈Item〉(tn ∧ tup∧
〈Item1〉xn ∧〈Item2〉yn) . . .))

〈Pred〉e)=
[x, y|x =x1, y =y1]; τ(x1); τ(y1); τ(e); . . . ;
[x, y|x =xn, y =yn]; τ(xn); τ(yn); τ(e)

7. Efficiency

To test whether the realizer’s speed is in the right ballpark for dialogue
applications, we have measured its performance on a pre-existing set of
46 test phrases and accompanying logical forms – including all those dis-
cussed in Baldridge (2002) – using a small but linguistically rich grammar
covering heavy NP shift, non-peripheral extraction, parasitic gaps, particle
shift, relativization, topicalization, NP coordination, clausal coordination
(including verb clusters and right node raising), and argument cluster coor-
dination. The phrases average 8.3 words in length, and vary from a mini-
mum of four words to a maximum of 16 words. The number of nodes in
the input logical forms averages 6.7.

68 M. WHITE

Table I. Realizer timing (in seconds)

Mean Max

First (±σ) Best (±σ) All (±σ) First Best All

−Ind,−Chunk,−Pru 0.382 (±0.694) 0.385 (±0.693) 10.5 (±37.4) 3.82 3.82 235

+Ind,−Chunk,−Pru 0.132 (±0.136) 0.134 (±0.137) 1.07 (±1.94) 0.554 0.554 10.9

+Ind,+Chunk,−Pru 0.067 (±0.044) 0.067 (±0.044) 0.327 (±0.527) 0.211 0.211 3.33
+Ind,−Chunk,+Pru3 0.132 (±0.136) 0.134 (±0.137) 0.919 (±1.45) 0.561 0.561 6.77

+Ind,+Chunk,+Pru3 0.066 (±0.042) 0.067 (±0.042) 0.266 (±0.326) 0.206 0.206 1.83
+Ind,+Chunk,+Pru2 0.066 (±0.041) 0.066 (±0.041) 0.250 (±0.283) 0.189 0.189 1.44
+Ind,+Chunk,+Pru1 0.065 (±0.038) 0.065 (±0.038) 0.174 (±0.153) 0.152 0.152 0.809

For each test phrase, we timed how long it took on a 2.2 GHz Li-
nux PC to realize each logical form using various realizer configurations.20

To rank candidate realizations, we used a modified version21 of the Bleu
n-gram precision metric (Papineni et al., 2001) employed in machine trans-
lation evaluation, using 1- to 4-grams, with the longer n-grams given more
weight. The n-gram precision scores were computed against just the target
phrase, a technique which we have found to be very useful for regression
testing the grammar. In practice, of course, one is not likely to have n-
grams available that so precisely guide realization; towards the end of this
section, we address the question of whether similar performance can be
expected in more realistic settings.

The results of timing the realizer on this test suite appear in Tables I
and II. Table I shows the realization times, in seconds, under a series of
configurations, while Table II shows how the phrases involving coordina-
tion compare to those not involving coordination. Note that under all con-
figurations, the best scoring realization exactly matched the target phrase
in every case; in the general case though, pruning can prevent the tar-
get phrase from ever being found, if applied too aggressively. Additionally,
and somewhat surprisingly, we found that under all configurations, the best
scoring realization was either found first or shortly thereafter, with little
difference between the time to find the first complete realization and the
time to find the best realization.

Each row of Table I shows the amount of time it takes to find the
first complete realization, the best scoring realization, and all realizations,
both on average and in the worst case.22 With the means, the standard
deviations are also given in parentheses. The first two rows show the effect
of indexing. The index filter cuts the mean time until the first realization
is found by nearly a third, and lessens the maximum time until the first

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 69

Table II. Realizer timing: coordination comparison

+Ind,+Chunk,+Pru3 Mean Max

First (±σ) Best (±σ) All (±σ) First Best All

All (n=6.7) 0.066 (±0.042) 0.067 (±0.042) 0.266 (±0.326) 0.206 0.206 1.83
Coord only (n=10.1) 0.103 (±0.046) 0.103 (±0.046) 0.236 (±0.122) 0.218 0.218 0.503
No coord (n=5.2) 0.060 (±0.038) 0.061 (±0.038) 0.300 (±0.380) 0.169 0.169 1.81

realization is found by about a factor of seven. As expected, the index fil-
ter also drastically reduces the time to find all realizations, by preventing
unrelated noun phrases from combining in a factorial number of ways (cf.
section 5.3); in particular, the maximum time to find all realizations drops
from 235 s to under 11s.

The second two rows show that the chunking rules and edge prun-
ing independently reduce the realization times. In particular, the third row
shows that the chunking rules reduce the mean time to find the first real-
ization from 0.132 (±0.136) to 0.067 (±0.044) s. The fourth row shows
that n-best edge pruning with a pruning value of 3 – i.e., with no more
than three signs kept in the chart per equivalent category – has a negli-
gible effect on the time to find the first realization, but does noticeably
reduce the time to find all realizations. The final three rows demonstrate
that edge pruning can work well in combination with the chunking rules,
with the last row showing that the maximum time to find the first reali-
zation goes down to 0.152 s when chunking is used in combination with a
pruning value of 1.

Even with edge pruning turned on, there remain substantial differences
between the mean and maximum times to find the best realization and the
mean and maximum times to find all realizations. Thus, to keep realization
times consistently low, the anytime search can be stopped well prior to the
completion of the chart, as long as at least one complete realization has
been found. One way to do so is to employ a new best time limit, which
caps the amount of time to look for a better scoring realization after find-
ing the first complete one.

In Table II, the realization times for the configuration with indexing,
chunking and three-best pruning are compared against those obtained in
the same configuration, but on just the examples involving coordination,
and just those not involving coordination.23 There are 14 test phrases
involving some form of coordination, with an average of 10.2 words per
phrase, a range of 6–16 words, and an average of 10.1 input nodes (n in
the table). The remaining 32 test phrases average 7.5 words in length, with
a range of 4–15 words, and an average of 5.2 input nodes. Taking the

70 M. WHITE

difference in the average number of input nodes into account, the pres-
ence of coordination appears to have little effect on realization times. For
example, for the coordination cases, the mean time to find the best realiza-
tion divided by the mean number of input nodes is 10.2 ms per input node,
while for the cases not involving coordination, the number is 11.5 ms per
node. If anything, the phrases involving coordination do appear to show
less variance than the phrases of comparable size that do not involve coor-
dination. That performance should be roughly comparable irrespective of
the presence of coordination is not surprising, since the efficiency methods
are all quite general. Nevertheless, it is a welcome result that coordinate
structures – even those involving non-standard constituents – can be real-
ized as efficiently as ones not involving coordination.

As mentioned earlier in this section, the use of n-gram precision
scores derived from the target phrase is not realistic from an application
perspective – if the target were already known, there would seem to be lit-
tle point in generating it. In White (2004), we have used such n-gram pre-
cision scores as a topline, and examined whether similar performance can
be obtained with n-gram models derived in a cross-validation setup. Using
5-gram backoff models with semantic class replacement, created with the
SRI language modeling toolkit (Stolcke, 2002), we observed much of the
same performance gains as with the topline scoring method, and substan-
tially better performance than either of two baselines employing no n-gram
scoring (see White, 2004 for details).

The performance figures in Table I suggest that the realizer is fast
enough for practical use in natural language dialogue systems; indeed, the
OpenCCG realizer has been deployed in two prototype dialogue systems
(den Os and Boves, 2003; Moore et al., 2004) to date, where realization
times have been satisfactory. While we expect that performance may vary
substantially with different grammars, the empirical observation that the
best scoring realizations appear first – or soon after – suggests that one
could realize sentences quickly enough for interactive use even with wider
coverage grammars. Whether the approach would continue to work equally
well with less fully specified input logical forms, however, is less clear.

There are several ways in which the realizer’s efficiency could be fur-
ther improved. First, the unification of feature structures could be opti-
mized along the lines of Malouf et al. (2000). While the implementations
of the combinatory rules have been optimized (Baldridge, 2002), unifica-
tion is otherwise naı̈ve and performs more copying than necessary. In prin-
ciple, it should also be possible to employ techniques for “packing” local
ambiguities (Shemtov, 1997; Langkilde-Geary, 2002); in White (2004), a
simpler alternative is proposed, namely using cached category combina-
tions. Finally, the algorithm could benefit from employing more top-down
constraints, as in semantic head–driven approaches to realization (Shieber

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 71

et al., 1990; Hoffman, 1995). To that end, as noted in section 4.5, a more
advanced scheme for using features to license and instantiate categories is
proposed in White (2004), which yields some of the benefits of such top-
down constraints, without changing the essentially bottom-up nature of the
chart realization algorithm.

8. Conclusion

Our approach to chart realization with CCG is closely related to that of
Carroll et al. (1999), which in turn builds upon Kay (1996) and earlier
work cited therein. Compared to Carroll et al., we have employed a similar
but more straightforward approach to semantic construction than the one
formalized in Copestake et al. (2001), since we do not allow underspecifi-
cation of the logical scope of quantifiers,24 and since there is no need for
special treatment of external arguments to handle control phenomena in
CCG. Additionally, rather than delaying the insertion of intersective mod-
ifiers until a second realization phase, as in Carroll et al.’s approach, we
have proposed the use of LF chunking rules to reduce the proliferation of
semantically incomplete phrases, a technique which fits well with our novel
edge pruning and anytime search methods.

In this article, we have presented a case study showing how our
algorithm can be used to efficiently realize a wide range of coordination
phenomena, including argument cluster coordination and gapping. We have
also presented initial performance tests indicating that the realizer is fast
enough for practical use in dialogue systems. To date, the OpenCCG real-
izer has been deployed in two prototype dialogue systems (den Os and
Boves, 2003; Moore et al., 2004), where realization times have been satis-
factory.

In ongoing work, we are investigating techniques for handling Steed-
man’s (2000a) approach to information structure and intonation. We
also plan to investigate new techniques for coupling CCG realization
with higher level planning components. One appealing direction is to see
whether the present approach to coordination can simplify the treatment
of aggregation in content planning components used in conjunction with
the realizer. Since current bottom-up approaches to aggregation such as
(Dalianis, 1996; Shaw, 1998) combine simple syntactic phrases into more
complex ones by looking for patterns of related semantic material, they do
not fit naturally into applications where it makes sense to group semantic
material during content planning, based on intentions or information struc-
tural considerations. In contrast, working with our realizer, content plan-
ning components can specify their aggregation decisions via distinctions
made at the level of logical form, taking advantage of the realizer’s abil-
ity to use differences in the input LF to control the choice of coordination

72 M. WHITE

options made available by the grammar. Initial steps in this direction are
reported in Foster and White (2004).

Acknowledgements

Many thanks to Jason Baldridge for help in getting started with OpenCCG,
and for co-authoring (White and Baldridge, 2003), which the present article
builds upon. Thanks also to Mark Steedman, Geert-Jan Kruijff, Johanna
Moore, Jon Oberlander, Mary Ellen Foster, Ann Copestake, John Beavers,
Johan Bos, and the anonymous reviewers for helpful discussion. This work
was supported in part by the COMIC (IST-2001-32311) and FLIGHTS
(EPSRC-GR/R02450/01) projects.

Notes
1 We prefer the term chart realization over chart generation, which has also appeared
in the literature, since surface realization is just one part of the overall task of natural
language generation.
2 http://openccg.sourceforge.net/
3 In practice, the type raising rules are constrained to apply to certain specific categories,
depending on the grammar, such as np and pp.
4 The particular choice of dependency roles does not matter to the realization algorithm.
5 Here we are glossing over the detail that logic variables in lexical entries need to be
replaced with fresh variables to avoid name clashes across entries, e.g. between the two
appearances of x in (10).
6 With λ-semantics, the same result can be achieved by selectively leaving λ-terms for
coordinate structures unreduced.
7 At present, certain syntactic choices may be left open by underspecifying semantic fea-
tures, and the realizer can make some lexical choices, e.g. choosing between lexicalizing
a combination of EPs such as the predicate see and the past tense feature as the single
word saw, or using the auxiliary and base form, did . . . see.
8 Alternatively, edges for semantically null lexical items could be added to the chart, but doing
so would require adding special cases for these items in steps 4b and c in Figure 2.
9 For unification purposes, nominals are treated as atoms during realization, rather than
as logic variables.
10 Note that each use of a lexical item gives rise to a distinct index nominal (similarly
to DRT), so (43) involves isomorphic EPs, rather than duplicate ones.
11 Cf. (Prevost, 1995) for a related use of unreduced λ-terms in the context of represent-
ing information structural units.
12 The same control over the realizer’s coordination decisions remains even when equiva-
lent logical forms are involved, as would be the case if a musician that . . . were replaced
with the musican that . . .
13 This category is forwards type-raised, for subjects; there is also a backwards type-raised
version, for objects.
14 In the collective reading, also plausible in (47), x can simply be unified with a set-valued
referent for Bob and Gil; with Bob or Gil, in contrast, only the distributive reading is possible.
15 To make the EPs for the conjunction form a connected sub-graph, as required by the
realizer’s lexical lookup algorithm, the nominals s and x2 may be connected by a relation
marking the end of the list.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 73

16 To facilitate the creation of LFs such as (60), OpenCCG includes a routine to con-
vert the flat list of EPs returned by the parser into hierarchical form, together with a
customizable transformation for raising shared arguments in coordinate structures up to
their desired location.
17 The features may also be considered simple nodes with no arcs emanating from them,
to bring these structures closer to Blackburn’s (2000) relational structures for hybrid
modal logic.
18 With this basic clause, the order in which the relations are translated is assumed to
be inconsequential. Also, to make the translation process easier to understand, we toler-
ate the use of the discourse referents x1 . . . xn in the translation of the node’s relations,
even though these referents may not become accessible until the recursive translations
τ(x1); . . . ; τ(xn) are merged.
19 The DRS in (74) requires a semantics that allows reassignment of discourse referents,
as in Muskens (1996).
20 Running the tests under different Linux and Windows Java virtual machines did not
appear to change the relative timings.
21 Our version did not include the bells and whistles intended to make cheating the Bleu
metric more difficult. Also, the individual n-gram scores were combined using rank-order
centroid weights, rather than the geometric mean, so as to avoid problems with combin-
ing precision scores of zero.
22 More precisely, the “All” columns indicate the amount of time until the agenda is emp-
tied, since pruning may prevent some realizations from ever being found.
23 Since these timings were obtained in separate runs, there is some minor variation in the
observed maximum times. Also, we chose to use a pruning value of 3, which we expect
to be more typically employed than a pruning value of 1.
24 Cf. Steedman (1999, 2003) for discussion.

References

Baldridge J. (2002) Lexically Specified Derivational Control in Combinatory Categorial Gram-
mar. Ph.D. thesis, School of Informatics, University of Edinburgh.

Baldridge J., Kruijff G.-J. (2002) Coupling CCG and Hybrid Logic Dependency Semantics.
In Proceedings of 40th Annual Meeting of the Association for Computational Linguistics,
pp. 319–326.

Baldridge J., Kruijff G.-J. (2003) Multi-Modal Combinatory Categorial Grammar. In
Proceedings of 10th Annual Meeting of the European Association for Computational
Linguistics.

Blackburn P. (2000) Representation, Reasoning, and Relational Structures: a Hybrid Logic
Manifesto. Logic Journal of the IGPL, 8/3, 339–625.

Carroll J., Copestake A., Flickinger D., Poznański V. (1999) An Efficient Chart Generator
for (Semi-) Lexicalist Grammars. In Proceedings of the 7th European Workshop on Natural
Language Generation, pp. 86–95.

Copestake A., Lascarides A., Flickinger D. (2001) An Algebra for Semantic Construction in
Constraint-based Grammars. In Proceedings of the 39th Annual Meeting of the Association
of Computational Linguistics, pp. 132–139.

Dalianis H. (1996) Concise Natural Language Generation from Formal Specifications. PhD.
thesis, Royal Institute of Technology, Stockholm.

den Os E., Boves L. (2003) Towards Ambient Intelligence: Multimodal Computers that
Understand our Intentions. In Proceedings of eChallenges e-2003.

74 M. WHITE

Elhadad M., Robin J. (1998) SURGE: A Comprehensive Plug-in Syntactic Realization Com-
ponent for Text Generation. http://www.cs.bgu.ac.il/surge/.

Foster M. E., White M. (2004) Techniques for Text Planning with XSLT. In Proceedings of
NLPXML-2004.

Geach P. (1972) A Program for Syntax. In Davidson D., Harman G. (eds.), Semantics of
Natural Language. Reidel, Dordrecht, pp. 483–497.

Geurts B. (2002) Specific Indefinites, Presupposition and Scope. In Bäuerle R., Reyle U.,
Zimmerman T. E. (eds.), Presuppositions and Discourse. Elsevier, Oxford.

Hockenmaier J., Steedman M. (2002) Acquiring Compact Lexicalized Grammars from a
Cleaner Treebank. In Proceedings of the Third International Conference on Language
Resources and Evaluation.

Hoffman B. (1995) Computational Analysis of the Syntax and Interpretation of ‘Free’ Word-
order in Turkish. PhD. thesis, University of Pennsylvania. IRCS Report 95–17.

Kamp H., Reyle U. (1993) From Discourse to Logic. Kluwer, Dordrecht.
Kay M. (1996) Chart Generation. In Proceedings of the 34th Annual Meeting of the Associ-

ation for Computational Linguistics. pp. 200–204.
Kruijff G.-J. M. (2001) A Categorial Modal Architecture of Informativity: Dependency

Grammar Logic & Information Structure. PhD. thesis, Charles University.
Kruijff G.-J. M. (2003) Binding Across Boundaries. In Kruijff G.-J. M., Oehrle R. T. (eds.),

Resource-Sensitivity in Binding and Anaphora. Kluwer Academic Publishers, pp. 123–158.
Langkilde I., Knight K. (1998) The Practical Value of n-grams in Generation. In Procedings

of the Ninth International Workshop on Natural Language Generation.
Langkilde-Geary I. (2002) An Empirical Verification of Coverage and Correctness for a

General-Purpose Sentence Generator. In Proceedings of the Second International Natural
Language Generation Conference.

Lavoie B., Rambow O. (1997) RealPro – A Fast, Portable Sentence Realizer. In Proceedings
of the Fifth Conference on Applied Natural Language Processing.

Malouf R., Carroll J., Copestake A. (2000) Efficient Feature Structure Operations Without
Compilation. Natural Language Engineering, 6/1, pp. 29–46.

Moore J., Foster M. E., Lemon O., White M. (2004) Generating Tailored, Comparative
Descriptions in Spoken Dialogue. In Proceedings of FLAIRS-04.

Moore R. C. (1989) Unification-based Semantic Interpretation. In Proceedings of the 27th
Annual Meeting of the Association for Computational Linguistics, pp. 33–41.

Moore R. C. (2002) A Complete, Efficient Sentence-Realization Algorithm for Unifica-
tion Grammar. In Proceedings of the 2nd International Natural Language Generation
Conference.

Muskens R. (1996) Combining Montague Semantics and Discourse Representations.
Linguistics and Philosphy, 19/2, 143–186.

Papineni K., Roukos S., Ward T., Zhu W.-J. (2001) Bleu: a Method for Automatic Evalua-
tion of Machine Translation. Technical Report RC22176, IBM.

Prevost S. (1995) A Semantics of Contrast and Information Structure for Specifying Intona-
tion in Spoken Language Generation. PhD. thesis, University of Pennsylvania. IRCS TR
96–01.

Shaw J. (1998) Clause Aggregation Using Linguistic Knowledge. In Proceedings of the Ninth
International Workshop on Natural Language Generation, pp. 138–148.

Shemtov H. (1997) Ambiguity Management in Natural Language Generation. PhD. thesis,
Stanford University.

Shieber S. (1988) A Uniform Architecture for Parsing and Generation. In Proceedings of the
14th International Conference on Computational Linguistics, pp. 614–619.

COORDINATE STRUCTURES IN COMBINATORY CATEGORIAL GRAMMAR 75

Shieber S., van Nord G., Pereira F., Moore R. (1990) Semantic-head–driven generation.
Computational Linguistics, 16/1, 30–42.

Steedman M. (1999) Quantifier Scope Alternation in CCG. In Proceedings of the 37th
Annual Meeting of the Association for Computational Linguistics, pp. 301–308.

Steedman M. (2000a) Information Structure and the Syntax-Phonology Interface. Linguistic
Inquiry, 31/4, 649–689.

Steedman M. (2000b) The Syntactic Process. MIT Press, Cambridge.
Steedman M. (2003) Scope Alternation and the Syntax/Semantics Interface. Manuscript,

draft 4.1.
Stolcke A. (2002) SRILM – An Extensible Language Modeling Toolkit. In Proceedings of

ICSLP-02.
Varges S., Mellish C. (2001) Instance-based Natural Language Generation. In Proceedings

of the 2nd Meeting of the North American Chapter of the Association for Computational
Linguistics, pp. 1–8.

White M. (2004) Reining in CCG Chart Realization. In Proceedings of the Third Interna-
tional Natural Language Generation Conference.

White M., Baldridge J. (2003) Adapting Chart Realization to CCG. In Proceedings of the
9th European Workshop on Natural Language Generation.

