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Abstract

When people engage in conversation, they tailor their utterances to their conversational partners,
whether these partners are other humans or computational systems. This tailoring, or adaptation to the
partner takes place in all facets of human language use, and is based on amental modelor ausermodelof
the conversational partner. Such adaptation has been shown to improve listeners’ comprehension, their
satisfaction with an interactive system, the efficiency with which they execute conversational tasks, and
the likelihood of achieving higher level goals such as changing the listener’s beliefs and attitudes. We
focus on one aspect of adaptation, namely the tailoring of the content of dialogue system utterances for the
higher level processes of persuasion, argumentation and advice-giving. Our hypothesis is that algorithms
that adapt content for these processes, according to a user model, will improve the usability, efficiency,
and effectiveness of dialogue systems. We describe a multimodal dialogue system and algorithms for
adaptive content selection based on multi-attribute decision theory. We demonstrate experimentally the
improved efficacy of system responses through the use of user models to both tailor the content of system
utterances and to manipulate their conciseness.
© 2004 Cognitive Science Society, Inc. All rights reserved.
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1. Introduction

When people engage in conversation, they tailor their utterances to their conversational
partners, whether these partners are other humans or computational systems (Brennan, 1991;
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Schober, 1998). This tailoring, or adaptation to the partner, has been shown to take place
in all facets of human language use, including speaking rate and response delay (Darves &
Oviatt, 2002;Ward & Nakagawa, 2002), amplitude and prosodic range (Coulston, Oviatt,
& Darves, 2002;McLemore, 1992), lexical and syntactic choice (Brennan, 1996; Kempen
& Hoenkamp, 1987;Levelt & Kelter, 1982), choice and modality of referring expressions
(Bell, Boye, Gustafson, &Wirn, 2000;Brennan &Clark, 1996;Garrod & Anderson, 1987;
Schober, 1998) and in higher level discourse processes such as the selection of content and
form for persuasive arguments and negotiation (Joshi, 1982; Joshi, Webber, &Weischedel,
1984; Mayberry & Golden, 1996;McGuire, 1968; Walker, 1996; Webber & Joshi, 1982).
This adaptive behavior is based on amental modelor a user modelof the conversational
partner (Brennan &Clark, 1996;Levelt, 1989; Wahlster &Kobsa, 1989;Zukerman &Litman,
2001). Such adaptation has been shown to improve listeners’ comprehension(Clark & Wilkes-
Gibbs, 1986), their satisfaction with an interactive system(Nass,Steuer, & Tauber, 1995), the
efficiency with which they execute conversational tasks (Brennan, 1996; Clark & Wilkes-Gibbs,
1986), and the likelihood of achieving higher level goals such as changing the listener’s beliefs
and attitudes (Luchok & McCroskey, 1978;[Carenini &] Moore, 2000b, 2001;Zukerman&
McConachy, 1993).

Our focus here is on one aspect of adaptation, namely the tailoring of the content of dialogue
system utterances for the high level processes of persuasion, argumentation and advice-giving.
Dialogue systems are one of the few examples of an intelligent artifact that can interact with hu-
mans to carry out a variety of tasks. Various hypotheses about conversational interaction can be
tested in dialogue systems by implementing algorithms that control the system’s conversational
behavior. As such, dialogue systems provide an important experimental vehicle for cognitive
science and theories of interaction. Our research also has the practical goal of improving the
dialogue interaction capabilities of the Multimodal Access to City Help (MATCH) multimodal
dialogue system, a system that provides information on restaurant and entertainment options
in New York City (Johnston et al., 2002b).

Our hypothesis is that algorithms that adapt content for higher level discourse processes,
according to a user model, will improve the usability, efficiency, and effectiveness of dialogue
systems. Dialogue systems have a particularly strong requirement to produce concise, infor-
mative and relevant utterances, especially during the information presentation phase of the
dialogue (Walker et al., 2002a). In this phase, the system has a number of possible options
that match a user’s constraints, which need to be presented to the user. It is important for the
system to present the options in a form that will help the user understand and evaluate the
tradeoffs among them. Dialogue strategies for recommending particular options, or for mak-
ing balanced comparisons between options, should help users make such evaluations. To be
effective in spoken dialogue, these recommendations and comparisons should also be concise.

Previous work on user modeling has primarily applied models of user expertise or knowledge
to the generation of user tailored texts, rather than to system utterances in a dialogue system.
The first such system, developed byRich (1979), tailored book recommendations to a user’s
preferences as expressed in a user model. The system first asked the user a series of (yes/no)
questions in order to categorize the user into one of its known stereotypes, and adjusted this
model as the (typewritten) interaction progressed. There has been considerable subsequent
research on developing interactive systems that utilize models of users’ capabilities, preferences
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or biases for recommendation, advice or explanation (Cawsey, 1993; [Carenini &] Moore,
2000b, 2001;Chin, 1989; Jameson, Schafer, Simons, &Weis, 1995;Joshi, 1982; Joshi et
al., 1984; Joshi, Webber, &Weischedel, 1986;Klein, 1994; Linden, Hanks, &Lesh, 1997;
Morik, 1989; Moore & Paris, 1993;Paris, 1988; Thompson &Goker, 1999;Walker, 1996;
Webber &Joshi, 1982)inter alia, and on methods for automatically inferring such models from
user actions (Goecks &Shavlik, 2000;Linden et al., 1997; Rafter, Bradley, &Smyth, 2000;
Rogers &Fiechter, 1999). Generation of text recommendations based on user preferences
is now being commercially deployed by CoGenTex in their Recommender system, which
automatically generates natural language descriptions and comparisons of product features,
using information obtained from a ranking and comparison engine(Cogentex, 2003).

Recommendations for particular options, and comparisons among options, are one form of
evaluative argument. An evaluative argument typically consists of a mainclaim, andevidence
relevant to the claim. Argumentation theory provides a number of guidelines for producing
effective evaluative arguments (Corbett &Connors, 1999;Mayberry &Golden, 1996;McGuire,
1968; Miller & Levine, 1996;Zukerman,McConachy, & Korb, 2000), which are summarized
by Carenini and Moore(Carenini &Moore, 2000a). These guidelines require:

(1) Identifying supporting and opposing evidence: evidence must be based on a model of the
user’s values and preferences, e.g. superb restaurant decor can only be used to support
an argument for going to a restaurant if the user is oriented to decor.

(2) Positioning the main claim: placing the main claim first helps users follow the line of
reasoning, but delaying the claim until the end of the argument can also be effective if
the user is likely to disagree with the claim.

(3) Selecting supporting andopposing evidence: an argument cannot include all the possible
evidence, so only strong evidence should be presented in detail, and weak evidence only
briefly mentioned or omitted entirely.

(4) Arrangement of supporting evidence: the strongest support should be presented first but,
if possible, one effective piece of supporting evidence should be saved for the end to
leave the user with a final impression of the strength of the argument.

(5) Addressingandorderingopposingevidence: the choices are not to mention any opposing
evidence, to acknowledge it without refuting it, or to acknowledge it and refute it. The
opposing evidence should be presented so as to minimize its effectiveness with strong
opposing evidence in the middle and weak evidence at the beginning and end.

(6) Ordering between supporting and opposing evidence: if the reader is aware of the
opposing evidence, then it should come before the supporting evidence, otherwise after.

These guidelines must first be formalized to be used in a computational system. The for-
malization requires representing the user’s values and preferences (guideline 1), providing a
way to measure the strength of supporting or opposing evidence (guidelines 3–5), representing
whether the user is aware of certain facts (guideline 6), and developing strategies for ordering
and structuring the selected content into coherent and persuasive arguments (guidelines 2, 4,
5, 6).

Carenini and Moore formalized and evaluated these guidelines in the context of a system
for interactive data exploration in the real estate domain (Carenini, 2000; [Carenini &] Moore,
2000a,b, 2001). Their operationalization of user models is based on multi-attribute decision
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theory (Keeney &Raiffa, 1976;Klein, 1994). Multiattribute decision theory provides both a
way to represent the user’s values and preferences and to measure the strength of supporting
and opposing evidence (as we explain in more detail below). The strength of evidence measure
is then the basis for strategies for selecting and structuring the content of recommendations.
The user model is also used to make these recommendations concise, in a similar approach to
that described here. Carenini and Moore showed experimentally that tailored recommendations
were preferred over non-tailored recommendations, and that concise recommendations based
on the user models were preferred over verbose recommendations.

Our research extends that carried out by Carenini and Moore in four ways. First, we test
whether user models based on multi-attribute decision theory generalize across domains, by
applying this approach to the problem of restaurant selection in New York City. Second, we
extend this approach to multi-modal dialogue, where the requirements for interactive infor-
mation presentation are different from those for text presentations. The system developed by
Carenini and Moore is interactive but does not carry on a natural language dialogue with the
user; instead it presents a single text recommendation in a multi-modal context. Third, we ex-
tend user-tailored generation to include comparisons as well as recommendations. We evaluate
the effects of user-tailoring on these strategies. Finally, we explore the relationship between
tailoring and mode of information presentation by exploring the effect of presenting these
strategies using text or speech.

Section 2describes the MATCH system and how we use it to test various cognitive hy-
potheses about user tailored interaction.Section 3describes the use of multi-attribute decision
theory for user modeling and provides detailed examples of user models from our user group.
Section 4describes the content selection algorithms based on the user models, and how they
are utilized in dialogue strategies based on argumention theory.Section 5describes the design,
hypotheses, and results of two evaluation experiments, which demonstrate the benefits of tai-
loring and the benefits of the user models in manipulating the conciseness of utterances. We
sum up inSection 6.

2. The MATCH dialogue system and specific hypotheses

The MATCH system runs on a small, portable, tablet computer, providing a testbed for re-
search on multimodal dialogue interaction in a mobile setting.Fig. 1shows the size of MATCH
relative to the human hand and illustrates a user gesture. Users interact with MATCH using a
multimodal user interface client. The tablet screen is divided into an area showing a street map
of New York City (seeFigs. 3 and 4), a table showing options that match the user’s current
request (if any), buttons to activate the speech recognizer, and a panel that provides feedback
on recognition and the system state. The street map is dynamically rendered and can be panned
and zoomed. Users may take a turn in the dialog with speech, gestures made with the pen,
handwriting, or a multimodal combination of inputs(Johnston et al., 2002b). Inputs are parsed,
integrated, and assigned a combined meaning representation using a multimodal language pro-
cessing architecture based on finite-state techniques (Bangalore &Johnston, 2000;[Johnston]
& Bangalore, 2000, 2001). In addition to finite-state multimodal integration, MATCH also dif-
fers from previous multimodal systems for interacting with maps, such as QuickSet (Cohen et
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Fig. 1. User interacting with MATCH running on Fujitsu PDA.

al., 1998; Johnston, 1998; Johnston et al., 2002a; Oviatt, 1999; Wu, Oviatt, &Cohen, 1999), in
that it supports handwritten input in addition to pen gestures, provides a dynamic map display,
and incorporates a multimodal dialog manager. The multimodal dialog manager, implemented
in Java, is in the style of TrindiKit(Larsson,Bohlin, Bos, & Traum, 1999) and features exten-
sions to support the visual mode in addition to spoken interaction (Hastie, Ehlen, &Johnston,
2002;Johnston et al., 2002b). The system’s responses can be speech, changes in the map dis-
play or text window, or coordinated multimodal presentations of these different output modes.
AT&T’s Watson and Natural Voices engines are used for speech recognition and text-to-speech
(TTS) (Beutnagel, Conkie, Schroeter, Stylianou, &Syrdal, 1999;Sharp et al., 1997).

Fig. 2. Example dialogue with MATCH: U, user; S, system.
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Fig. 3. MATCH’s graphical system response toShow me Italian restaurants in the West Village.

Our goal is to improve MATCH’s dialogue interaction capabilities and general utility by
making it easier for users to understand the tradeoffs between different restaurant options. Our
view is that this can be done in three ways by providing the system with capabilities for: (1)
responding to requests for recommending one of a set of restaurants, or for comparing small
sets of restaurants; (2) tailoring these recommendations and comparisons to a model of the
user’s individual preferences; and (3) making the responses sufficiently concise for the user to
understand and remember important information.

The role of the user model in system responses is to affect both the ranking of options returned
from the database and the selection of which attributes to mention in a recommendation or
comparison.Fig. 2shows a sample dialogue with MATCH exploiting the user tailored dialogue
strategies described in the rest of the paper, with examples tailored for the user OR (seeFig. 7
for OR’s user model). InFig. 2, in utterance U1, the user specifies the queryShow Italian
restaurants in the West Villagein speech. The system responds in S1 by presenting a map of
New York, zooming to the West Village and highlighting Italian restaurants (Fig. 3). At this
point, the user has too many options to decide between so he decides to select a set with a
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Fig. 4. User circles subset of Italian West Village restaurants for comparison.

pen gesture (Fig. 4) and compare them (U2). S2 is that comparison. Since all the restaurants
mentioned in S2 are acceptable, the user asks the system to recommend one by writing the
word “recommend” (U3). The recommendation operates on the current dialogue context which
is the selected set (from U2).

The system utterances inFig. 2 are all generated at a fixed level of conciseness. Sample
recommendations for a task of finding a Japanese restaurant in the East Village for two different
users, with varying levels of conciseness as generated by our algorithms are shown inFig. 5.

Fig. 5. Recommendations for users CK and BA, for the East Village Japanese Task, of varying levels of conciseness.
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The user model and the conciseness parameterz lead to selection of different restaurants to
recommend and to mentioning different facts to each user.

Note also that the user model reflects a users’dispositionalbiases about restaurant selection,
but these can be overridden bysituationalconstraints specified in a user query. For example,
the user models (as described below) allow us to represent the fact that some users have strong
preferences for particular food types. However, in a particular dialogue situation, these can be
overridden by interactively requesting a different food type, e.g. Italian food as inFig. 2. Thus,
dispositionalbiases never eliminate options from the set of options returned by the database,
they simply affect therankingof options, and the weighting of their attributes.

The primary hypothesis that we wish to test through user interactions with the MATCH sys-
tem is thatuser tailored responses are more effective. In the evaluation experiments described
below, we compare the users’ evaluation of dialogue responses tailored to their own model,
with responses tailored to a randomly selected model of another user.

Our second hypothesis concerns conciseness. We utilize the strength of evidence defined
by the user model to vary theconcisenessof system responses. Concise utterances are defined
as those mentioning just those restaurants and their attributes that are most relevant to the
user’s preferences. We compare user’s evaluation of concise, sufficient and verbose dialogue
responses.

A third hypothesis concerns potential interactions betweenuser-tailoring and the mode in
which information is presentedin a multimodal dialogue system, i.e. in speech or in text.
Consistent with prior research, we expect the ephemeral nature of speech (and the resulting
cognitive load) to make this a less effective output mode than text (McKeown, Feiner, Dalal, &
Chang, 1998;Mittal, Roth, Moore,Mattis, & Carenini, 1995;Oviatt, 1997; Whittaker, Brennan,
& Clark, 1991). However, we also expect that tailoring might address some of the inherent
limitations of speech, having a greater effect on spoken than text presentations.

3. Multi-attribute decision models in the restaurant domain

User models derived from multi-attribute decision theory have been shown to be effective
for guiding user interaction in various types of interactive systems (Jameson et al., 1995; Klein,
1994; Linden et al., 1997; Thompson &Goker, 1999). They have also been found to be good
predictors of user’s consumer behavior(Solomon, 1998). For our current purposes, they have
two other important properties, namely (a) they are quantitative, which makes them easy to
operationalize (b) it is relatively easy to gather the data necessary for constructing such user
models of this type.

Multi-attribute decision models are based on the claim that if anything is valued, it is valued
for multiple reasons(Keeney &Raiffa, 1976). In the restaurant domain, this implies that a
user’s preferred restaurants optimize tradeoffs among restaurant attributes. To define a model
for the restaurant domain, we must determine these attributes and their relative importance for
particular users. We use a standard procedure called SMARTER that has been shown to be
a reliable and efficient way of eliciting multi-attribute decision models for particular users or
user groups(Edwards &Hutton Barron, 1994).
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3.1. Structure of the model

The first step of the standard SMARTER procedure is to determine the structure of a tree
model of theobjectivesin the domain. In MATCH, the top-level objective is to select a good
restaurant. User interviews and data collection along with an analysis of online restaurant
databases indicated that six attributes contribute to this objective: the quantitative attributes
food quality, cost, decor, andservice; and the categorical attributesfood typeandneighborhood
(Whittaker, Walker, &Moore, 2002). These attributes are structured into the one-level tree
shown inFig. 6. A more complex structure that grouped decor, neighborhood and service
under a higher level objective calledambiancewas considered, but informal questioning of
users suggested this structure was less intuitive(Whittaker et al., 2002).

The structure is user-independent with user-dependent weights on the branches as explained
below. We apply this structure to a database of approximately 1000 restaurants populated with
information freely available from the web. Values for each of these attributes for each restaurant
are stored in the database.

3.2. Normalizing attribute values

The second step is to transform the real-domain values of attributesx into single-dimension
cardinal utilitiesu(x) such that the highest attribute value is mapped to 100, the lowest attribute
value to 0, and the others to values in the interval 0–100. This is necessary to normalize the
values of the different attributes. In the restaurant database that we accessed from the Web
food quality, serviceanddecor range from 0 and 30, with higher values more desirable, so
0 is mapped to 0 and 30–100 in our model. Thecostattribute ranges from $10 and $90 and
higher values are less desirable, so $90 is mapped to 0 on the utility scale. Preferred values for
categorical attributes such asfood typeare mapped to 90, dispreferred values to 10 and others

Fig. 6. Structure of objectives for MATCH.
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Table 1
Mapping of attribute values to utilities in the restaurant domain

Attribute Range of values Mapping of values to cardinal utilities

Food quality, Service, Decor 0–30 value× 3 1/3
Cost 0–90 100− (10/9× value)
Food type, neighborhood e.g. Italian, French, West Village Top values listed by user are mapped

to 90, bottom ones to 10 and all others to 50

to 50.1Table 1shows the attributes in the restaurant domain, with the functions mapping the
values of each attribute in the web database into cardinal utilities.

The vector ofu(x) values are aggregated into a scalar in order to determine the overall utility
Uh of each optionh. The most widely used model for such aggregations is the additive model
(over 95% of models used in practice are additive), and standard heuristic tests with users
suggested that an additive model is a good approximation(Edwards &Hutton Barron, 1994).
Use of an additive model means that each attribute is assumed to be independent of every
other one. The individual attribute utilities are combined into an overall utility using a simple
additive function; the value for each attribute is multiplied by its weight and all the weighted
values are summed. Thus, ifh (h = 1, 2, . . . , H) is an index identifying the restaurant options
being evaluated,k (k = 1, 2, . . . , K) is an index of the attributes,u is the function for each
attribute mapping attribute values to utilities, andwk is the weight assigned to each attribute:

Uh =
K∑

k=1

wkuk(xhk)

3.3. Allocating weights to attributes

The final step of decision model construction is the assignment of specific weightswk to
each attributek. Attribute weights are user-specific, reflecting individual preferences about
tradeoffs between options in the domain, and are based on users’ subjective judgments elicited
using the SMARTER elicitation procedure. SMARTER’s main advantage over other elicitation
procedures is that it only requires the user to specify therankingof domain attributes. There is
considerable experimental evidence showing that simple attribute ranking is both efficient, and
nearly as accurate as more time-consuming methods, in which users allocate weights directly
(Edwards &Hutton Barron, 1994;Srivastava &Connolly, 1995).

We elicit a user model when new users enroll with MATCH using the standard form of
questions specified by SMARTER. The elicitation procedure is implemented as a sequence of
web pages. The first web page saysImagine that for whatever reason you have had the horrible
luck to have to eat at the worst possible restaurant in the city. The price is$100 per head, you
do not like the type of food they have, you don’t like the neighborhood, the food itself is terrible,
the decor is ghastly, and it has terrible service. Now imagine that a good fairy comes alongwho
will grant you one wish, and you can use that wish to improve this restaurant to the best there
is, but along only one of the following dimensions. What dimension would you choose? Food
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quality, service, decor, cost, neighborhood, or food type?After the user chooses an attribute on
this page, the scenario is repeated omitting the chosen attribute, until all attributes have been
selected. Users are then asked to specify whether they have anyneighborhoodor food type
likes or dislikes.

Given the ranking, the weights are calculated using the following equation, which guarantees
that the total sum of the weights add to 1, a requirement for multi-attribute decision models:

wk = 1

K

K∑

i=k

1

i

3.4. Resulting user models

To date, 29 different user models have been elicited and stored in a database that MATCH
uses.Fig. 7 shows attribute weightings and likes and dislikes for five of these users. What
is most striking about the table are the large differences between users. When differences in
categorical preferences are taken into account, no two users in our sample are alike, but even
if we only consider the relative importance of various attributes, we find that only two pairs
of users are identical in the ranking of attributes. For 25 of these users, we found thatcost
andfood qualityare always in the top three attributes, but user BA rankedfood typehighest,
followed bycostandservice. Even for users who ranked bothcostandfood qualityin their
top three attributes, the relative importance of lower ranked attributes, such asdecor, service,
neighborhoodandfood type, varies widely. For example, every user ranksservicedifferently
as reflected by the different weights in the Service column. User CK ranksdecoras the least
important attribute, while user OR ranks it third in importance, and users CK and SD rank
food typeas the second most important attribute while users OR and MSh rankfood typelast.
After examining these differences qualitatively, we decided it would be useful to be able to
quantify the differences among user models. We utilize a common measure ofdistance, the
Manhattan or city-block distance(Mitchell, 1998), which is simply the sum of the absolute
values of the differences in the weights for each attribute in the user models. That is, for users
i, j and attributesk indexed from 1, . . . , K, with weightswk,

distanceij =
K∑

k=1

(|wki − wkj|)

For example, the distance between users CK and VM inFig. 7 is .84, and the distance
between users CK and BA inFig. 7 is .89. The average distance between user models in our
current user group is .57. The distance metric enables us to manipulate differences between
models and to quantify the effect of those manipulations.

4. The SPUR dialogue planner

So far, we have described the nature of user models derived from multi-attribute decision
theory. We now explain how these are used to generate user tailored outputs in an interactive
dialogue system.
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Fig. 7. Example user models: FQ, food quality; SVC, service; DEC, decor; Nbhd, neighborhood; FT, food type.

The content planning module in MATCH is called speech planning with utilities for restau-
rants (SPUR). The user model is used by SPUR for two aspects of content selection: (1) it
ranks the options returned from a database query, and the ranking is used by SPUR to select a
subset of restaurant options to recommend or compare; (2) it determines a subset of attributes
that are mentioned for each option, with the size of the subset depending on the setting of a
conciseness parameter.

SPUR takes as input: (1) a dialogue strategy goal; (2) a user model; (3) a conciseness
parameterz, and (4) a set of restaurant options returned by the database that match situational
constraints specified in the user’s query. Given the options, and the conciseness setting, SPUR
constructs a content plan specific to each strategy and user model. The resulting content plan
serves to filter the information presented to the user so that only options and attributes that are
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most relevant to the user are mentioned, contrasted and highlighted. This should make it easier
for the user to evaluate the trade-offs among options in a set, reducing dialogue duration and
increasing user satisfaction.

We first illustrate how the user model reranks the option set to which we then apply our system
dialogue strategies, and describe how the user model affects the recommend and compare
content plans.

4.1. The effect of user model on option ranking

To show the effects of user model on option ranking, we present the restaurant options that
match the queryShow Japanese restaurants in the East Village. Fig. 8 shows how the user
models for CK, BA and VM rank these options. The third column gives the overall utility,
Uh. The subsequent columns give the attribute values and in parentheses the weighted utilities
(WTD). Note thatfood qualitycontributes most strongly to the weighted utilities in the CK
model ranking, whilecost contributes most strongly to the ranking for both BA and VM.
However, BA and VM differ in that VM’s second most important attribute isfood quality,
while for BA the second most important attribute isfood type. This modifies the ranking of the
restaurant set.

Let us consider in detail the differences in overall ranking for CK and VM resulting from
different attribute weightings. Bond Street (a highly priced restaurant with excellent food

Fig. 8. Results of DB query for East Village Japanese for users BA, CK and VM:Uh, overall utility; WTD, weighted
utility for each attribute; FQ, food quality; SVC, service; DEC, decor; Nbhd, neighborhood; FT, food type.
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quality) is fifth for VM because VM rankscostfirst andfood qualitysecond. Bond Street’s 25
rating for food qualityresults in 34 utils (utils are units of weighted utility) for CK, but only
20 utils for VM.

Also, Bond Street’s price of $51 per person results in only 19 utils for VM; all of the
restaurants ranked higher by VM than Bond Street are less expensive. On the other hand,
Komodo is more highly ranked for VM than CK. This is mainly because its modest price gets
31 utils for VM but only eight for CK. Note also that Dojo, which is very inexpensive, is as
good as Bond Street in overall utility for VM (both get 56) but for CK, Dojo’s lower food
quality means that it has a much worse overall utility.

4.2. SPUR dialogue strategies

We defined two types of strategy for SPUR: (1)recommend one of a selected set of restau-
rants; (2)compare three or more selected restaurants. For each response, SPUR outputs a
content plan to the template-based surface realizer (described below), using the overall utility
Uh to rank the options as described inSection 4.1. For recommendations, the algorithm selects
the top-ranked option. For comparisons, the algorithm selects a top-ranked subset of options
to compare. Then the weighted attribute values are used to select the content for each option.

Conciseness is controlled with a parameter that determines whether an option or attribute
is an outlier with respect to other options or attributes. Outliers are deemed worth mentioning
because they deviate from the norm(Klein, 1994). According to multi-attribute decision theory,
the weighted attribute model also enables us in principle to determine the likelihood that
mentioning a given attribute will change the user’s belief state. For example, compare the
recommendations inFig. 5. The most concise recommendation for both CK and BA mentions
one attribute. The weighted attribute values for each user inFig. 8 predict how convincing
a recommendation would be that includes just that attribute.Fig. 8 indicates that telling CK
about Bond Street’sfood qualityshould provide 34 utils (units of utility) out of a possible 63.
Similarly, telling BA about Komodo’sfood typeis predicted to provide 36 utils out of a possible
77. Including more attributes makes the recommendation more convincing, e.g. adding thefood
typeattribute as in CK’s Sufficient recommendation inFig. 5should provide 46 (34 + 12) utils
out of a possible 63 total utils.

In sum, we map conciseness directly onto the weighted attribute ranking of the user model:
more concise descriptions select the subset of attributes that maximally affect the user’s belief
state. More verbose descriptions also include lower weighted attributes. Obviously, however,
there is a trade-off between maximizing expected utility, and verboseness. Mentioning more
attributes increases expected utility while requiring the user to remember more information.

Below, we first describe how outliers are identified (Section 4.2.1), and then describe the
algorithms for constructing each type of content plan.Section 4.3describes the templates used
to realize the content plans.

4.2.1. Defining outliers
We define a response astailored if it is based on a user’s known biases and preferences. A

response isconciseif it includes only those options with high utility, or possessingoutliers
with respect to a population of options or attribute values. We use thez-score(standard value)
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Fig. 9. Algorithm for recommendation generation.

of an option’s overall utility, or of the weighted attribute valuev, to define anoutlier:

z(v) = v − µV

σV

Thez-scoreexpresses how many standard deviationsσV a valuev is away from the mean
µV of a population of valuesV. The population of valuesV that are used to calculateµV andσV

can be (a) other attributes for the same option (forrecommend), or (b) the same attribute for
other options (forcompare). Depending on a threshhold for outliers,z, different numbers of
options or attribute values are considered to be worth mentioning, because they stand out from
other values. For example, when the threshhold forz is 1.0, the weighted attribute values must
be more than one standard deviation away from the mean for that attribute to be selected for
expression. This threshold can obviously be modified to generate responses at different levels
of conciseness. In the examples below, we illustrate responses for different settings ofz, for
the user models for VM, CK and BA inFig. 7.

4.2.2. Recommendation dialogue strategies
The system’s strategy for making a recommendation is to select the best option (based on

overall utility) and provide convincing reasons for the user to choose it (based on weighted
attribute values).Fig. 9 provides the algorithm for selecting the content for therecommend
dialogue strategy.

First, consider the effect of the user model on recommendations at a fixed level of conciseness
(z-value of .3).Fig. 10shows sample responses, for the East Village Japanese task, for users CK,
BA and VM. Because of differences in user model ranking, Bond Street is recommended to CK
and Komodo to BA and VM, and different attributes are selected for the three recommendations.

Fig. 10. Recommendations for users CK, BA and VM, for the East Village Japanese task, forz= .3.
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Fig. 11. Recommendations for user BA, for the East Village Japanese task, of varying levels of conciseness.

Now, consider the algorithm’s implementation for the BA model for varying values ofz
as illustrated inFig. 11. The setting forz determines the number of attributes selected to
provide evidential support for recommending Komodo. In the experiments reported here, for
recommendations,z ranges from−1.5 to 1.5. Generally this means that that there is at least
one outlying attribute, even for the highest value ofz. When there are no outlier attributes,
the algorithm simply mentions the restaurants with highest overall value.Fig. 8 provides the
relevant utility and weighted attribute values. The weighted attribute values for Komodo are 7,
10, 4, 18, 2, 36 forfood quality, service, decor, cost, neighborhoodandfood typerespectively.
Outliers are calculated for recommendations with respect to the values for other attributes for
the same restaurant. Whenz is 1.5 or .7, only thefood typeattribute is selected. Whenz is .3,
the attributescostandfood typeare selected. Whenz is −.5, the attributescost, serviceand
food typeare selected. Whenz is −.7, the attributescost, service, food qualityandfood type
are selected. Whenz is −1.5, the attributescost, service, food quality, decorandfood typeare
selected.

4.2.3. Generating comparison content plans
The goal of a comparison is to mention several potential candidate options (those with

highest overall utility) and provide the user with user tailored ways for choosing among them
(expressed as different weighted attribute values).

SPUR’scompare strategy can be applied to three or more options. If there are more than five,
a subset are first selected according the algorithm inFig. 12and the content for each option
is selected using the algorithm inFig. 13. Because comparisons are inherently contrastive, the
algorithm inFig. 13describes a procedure whereby if a weighted attribute value is an outlier for
any option, the attribute value is realized for all options. We use this approach for two reasons:
(1) it is not possible for the user to compare options without the same information about all of
them; and (2) mentioning the same attributes about each option allows a parallel structure in



M.A. Walker et al. / Cognitive Science 28 (2004) 811–840 827

Fig. 12. Algorithm for selecting a subset of options to compare.

Fig. 13. Algorithm for selecting content for subset of options to compare.

the realization, which supports the user’s inference of contrast (Meteer, 1991; [Prevost, 1995;
Prince, 1985]).

Fig. 14illustrates the effect of the user models on comparisons, for the East Village Japanese
task, for a fixed level of conciseness. Each comparison selects a subset of options that are outliers
for overall quality for the particular user, given the setting forz. In this case, thez-value of
.3 selects three options for CK, two for VM and only one for BA. The selected attributes are
outliers with respect to the population of attribute values under consideration. For comparisons,
the population of values are those for a particular attributeacrossa set of restaurant options.

Fig. 14. Comparisons for users CK, VM and BA, for the East Village Japanese task.
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Fig. 15. Comparisons for user VM, for the East Village Japanese task, at varying levels of conciseness.

The outlier attributes here arefood quality, serviceanddecor, which are realized as inFig. 14.
The food typeattribute is selected for user CK because of the larger set of restaurants from
which outliers are calculated.

Now, consider the algorithms inFigs. 12 and 13applied withz-values ranging from−1.5
to 1.5.Fig. 15shows comparisons for user VM for varying levels of conciseness.Fig. 8shows
the relevant values for overall utilityUh and weighted attribute values.

4.3. Realization of dialogue strategies

We developed a template-based realizer that takes as input the content plans that SPUR
produces using the algorithms described above and generates a marked-up string to be passed
to the text-to-speech module.

Fig. 16 illustrates a content plan for recommendations, for user BA forz of −.7, that
the template-based realizer takes as input. The representation of the plans is based on pre-
vious work (Marcu, 1997; Mellish, Knott, Oberlander, &O’Donnell, 1998), where each
plan consists of a set ofassertionsthat must be communicated to the user and a set of
rhetorical relationsthat hold between those assertions that may be communicated as well.
Each rhetorical relation designates one or more facts as thenuclei of the relation, i.e. the
main point, and the other facts assatellites, i.e. the supplementary facts(Mann & Thomp-
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Fig. 16. A content plan representation for a recommendation for user BA for a Japanese restaurant in the East
Village for zof −.7.

son, 1987). The content plan inFig. 16 specifies that the nucleus is the assertion thatKo-
modo has the best overall value, and that the satellites are the evidential support for this
assertion.

Following guidelines from argumentation theory, the strategy for realizing recommendations
is to order the nucleus first followed by the satellites. The satellites are ordered to maximize the
opportunity for aggregation - to produce the most concise recommendations given the content
to be communicated, phrases with identical verbs and subjects are grouped, so that lists and
coordination can be used to aggregrate the assertions about the subject.Figs. 5 , 10, and 11
provide examples.

The realizer also lexicalizes each attribute value of the content assertions for both rec-
ommendations and comparisons. Each attribute value except forcost is mapped to a pred-
icative adjective using the following mapping: 0–13→mediocre; 14–16→decent; 17–19
→good; 20–22→very-good; 23–25→excellent; above 25→superb. Cost is not lexical-
ized in this way, because user pilots showed little consensus between users about mapping
absolute cost to specific lexical items, i.e. $30 is an expensive meal for some, but cheap
for others. Thus the cost attribute is referred to asprice and its real value is given in the
description.

Fig. 17illustrates a content plan for comparisons, for user VM forzof .3, that the template-
based realizer takes as input. The option selection algorithm inFig. 12determines that Taka-
hachi and Komodo are outliers for overall utility, thus the nucleus is the assertion that Komodo
and Takahachi are exceptional restaurants and the satellites are assertions about the selected at-
tributes for each restaurant. Contrast relations hold between pairs of assertions about attributes.
The realization template for comparisons focuses on communicating both theelaborationand
thecontrastrelations. One way to communicate theelaborationrelation between the nuclei
and the satellites is to structure the comparison so that all the satellites are grouped together,
following the nucleus. In order to communicate thecontrastrelation, these satellites are pro-
duced in a fixed order, with a parallel structure maintainedacrossoptions[(Prevost, 1995;
Prince, 1985)]. The satellites are initially ordered in terms of their evidential strength, but
then are reordered to allow for aggregation in order to produce the most succinct descriptions.
Examples are given inFigs. 14 and 15.
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Fig. 17. A content plan representation for a comparison for a Japanese restaurant in the East Village for user VM
for z = .3.

5. Experimental evaluation

Our experiments evaluated four main hypotheses, concerning tailoring, conciseness, mode
and the interaction between tailoring and mode.

• Tailoring: We expected users to prefer tailored to untailored system responses.
• Mode: We expected users to prefer text to speech responses.
• Tailoring/mode: We expected tailoring to have a greater effect on judgements of speech

as opposed to text responses because speech imposes a greater cognitive load.
• Conciseness: We expected users to be sensitive to the amount of information provided in

system responses, and to prefer concise to verbose responses.

We test the first three hypotheses in the tailoring experiment described inSections 5.1
and 5.2. We test the final hypothesis with a separate experiment that directly manipulates the
conciseness parameter while holding the user model constant for the particular user who is
acting as subject in the experiment. This experiment is described inSections 5.3 and 5.4.

In both experiments, the user models were collected in a separate process that took place
before the experiments. We also carried out a pre-experimental survey where subjects provided
information about where they live, the frequency of eating in restaurants in general, and their
familiarity with Manhattan.

There were six experimental tasks altogether, each involving one or two constraints on the
selection of a set of restaurant options: (a) French restaurants; (b) restaurants in Midtown West;
(c) Italian restaurants in the West Village; (d) Asian restaurants in the Upper West Side; (e)
cheap restaurants; (f) Japanese restaurants in the East Village. Only tasks a–d were used in the
tailoring and mode experiment whereas all six tasks were used in the conciseness experiment.
The tasks were chosen after extensive piloting to accommodate a variety of user models, to
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be fairly easy for subjects to remember, and to provide sets of restaurants large enough to be
interesting. The order of the presentation of tasks is consistent across subjects.

The experimental procedure for both experiments treats the subject as an “overhearer”
of a series of dialogues, each involving one restaurant-selection task (Walker et al., 2001a;
Whittaker & Walker, 2002). Each dialogue about a task consists of a sequence of dialogue
exchanges between the user and the system, with each exchange presented on a separate web
page. The initial web page for each task sets up the task by showing the MATCH system’s
graphical response for an initial user query, e.g.Show Italian restaurants in the West Village.
Prior research indicated that a typical dialogue structure in this domain is for users to identify
promising candidate restaurants and request more information about these (compare) and then
request detailed information about a single specific option (recommend)(Whittaker et al.,
2002). Therefore, for all subjects and tasks, the following pages show the user first circling
some subset of the restaurants and asking the system tocompare them, and then torecommend
options from the circled subset. The sample dialogue inFig. 2illustrates this dialogue structure.
The main advantage of the “overhearer” method is that it allows users to give specific feedback
about alternative system responses in the context in which they are provided.

5.1. Experimental design for tailoring and mode experiment

The first experiment tests the tailoring, mode and tailoring/mode hypotheses and consists of
dialogues involving tasks a–d, as described above. To test the tailoring hypothesis, the subject
sees two types of responses on each web-page for each dialogue exchange, one tailored to
her user model, and the other tailored to the user model of another randomly selected subject.
We then compare subjects’ judgments of the two responses. By randomly selecting another
user model (Random), and using the distance between two user models, we can both test
whether having one’s own model is better than someone else’s, and quantifyhowmuchdistance
there has to be between two user models to make a difference in the subject’s perception of
system responses. The order of presentation of subject-tailored and other-tailored responses is
randomized from page to page.

For each instance of a recommend, or compare strategy, the subject is asked to state her
degree of agreement on a five-point Likert scale (a standard technique for mapping subjective
responses to scalar values(Likert, 1932)with the following statement, intended to determine
the informativeness, or information quality, of the response:the system’s utterance is easy
to understand and it provides exactly the information I am interested in when choosing a
restaurant. The statement refers to both comprehensibility and informativeness. We asked
about both these dimensions in a single compound statement because our algorithms were
intended to simultaneously optimize both the exact information presented (the second part of the
statement), and the format in which it was presented (the first part of the statement). Extensive
piloting showed a statement about comprehensibility alone favored a short response and a
statement about informativeness alone favored a long response. Responses to this compound
statement are measured as InformationQuality.

Since the algorithms for recommendations and comparisons consist first of algorithms for
ranking restaurant options, and then for selecting content, we ask users to provide judgements
related to the ranking of options as a secondary measurement of the efficacy of system responses.
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For each instance of a recommendation, the subject is asked to state her degree of agreement
with this statement (again on a five-point Likert scale):I am confident that the recommended
restaurant is someplace I would like to go.A similar statement is used to evaluate the ranking of
options for comparisons between three or more restaurants:I am confident that the restaurants
being described are places I would like to go.User responses to these questions are measured
as the variable RankingConfidence in the results below.

In order to test the mode and tailoring/mode hypotheses the entire sequence of web pages
is presented twice. The first time through, the subject can only read (not hear) the system
responses. The second time, she can only hear them. We used this read-then-hear approach
(again after extensive piloting), to familiarize subjects with proper names in the restaurant
domain. Prior text presentation means that proper names are primed for users in the speech
condition making them less likely to be misunderstood. But the fact that text and speech
presentations of the same task are 10–15 min apart means that users cannot remember their
judgments for the previous instance of the task.

We test the mode hypothesis by asking users to judge the same responses in the same context
first in text and later in speech. We test the mode/tailoring hypothesis by comparing the effects
of tailoring on speech with its effects on text. We expect that providing a user model will have
greater effects for speech than text because of the greater problems that users experience in
processing complex speech outputs.

To summarize, each subject “overhears” a sequence of four dialogues about different
restaurant-selection tasks. The entire sequence is presented twice (once for text, once for
speech). The subject makes six InformationQuality judgments for each dialogue each time
made up of (a) one recommendation and two comparisons tailored to the subject’s user model;
and (b) one recommendation and two comparisons tailored to a randomly selected user model.
The total number of InformationQuality judgments per subject is 48. The subject makes four
RankingConfidence judgements for each dialogue each time. The total number of confidence
judgements per subject is 32. The total time required to complete the experiment is approxi-
mately half an hour per subject.

Sixteen subjects who had previously enrolled with the system took part in the experiment
as volunteers. All were fluent English speakers. Most eat out moderately often (seven eat out
3–5 times per month, six 6–10 times). All sixteen currently live in northern New Jersey. Eleven
described themselves as somewhat or quite familiar with Manhattan, while five thought they
were not very familiar with it.

5.2. Tailoring experimental results

We first tested whether differences in the user model affected subjects’ rankings of the
InformationQuality of the system’s responses. A pairedt-test confirmed the tailoring hypothesis
that people prefer responses generated with their own model than with a randomly assigned
model (t(383)= 1.76;P < .05, for a one-tailed test).

However, although the predicted effect is significant, this is a conservative test: the Random
model condition includes cases where the randomly assigned model is close to the User’s
Own model. We therefore, filtered the original set of judgments to exclude cases where the
distance between the Random Model and the User’s Own Model was less than .3, to exclude
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these similar cases. This removed 9% of judgments from the original data set. To test our
hypotheses, we conducted two analyses of variance with model type (Own, Random)× mode
(Speech, Text)× strategy (Recommend, Compare) as independent variables and judgments
of InformationQuality or RankingConfidence as the dependent variables. As predicted, there
were main effects for model type, both for InformationQuality (F = 5.6; d.f. = 1,674;P < .02)
and RankingConfidence (F = 4.3; d.f. =1,674;P < .05), showing that using the User’s Own
model significantly improved system responses, and confirming the tailoring hypothesis.

Our results partially confirm the mode hypothesis. For InformationQuality, as predicted,
mode was significant, (F = 3.8; d.f. = 1,674;P < .05), with text responses being rated more
highly than speech. Mode has no significant effect on users’ RankingConfidence, however
(F = .1; d.f. = 1,674;P = .9).

Finally, and contrary to our predictions, there was no interaction between model type and
mode (F = .02; d.f. = 1,674;P > .05), so the mode/tailoring Hypothesis was not confirmed.
One possible explanation is that there were floor effects for Speech judgments and this in
turn reduced the variance in these judgments. Neverthless, there were no differences between
judgments of text with the random model and tailored speech (t(397)= 1.8; P > .05). This
offers some evidence that with previous exposure to restaurant names and proper name priming
it is possible to overcome limitations of speech by the use of tailoring.

5.3. Conciseness experimental design

We now describe our evaluation of the conciseness hypothesis. The goal of this experi-
ment is to: (1) test whether our manipulations of conciseness correspond to user’s perceptions
of conciseness; and (2) determine an optimal level of conciseness for recommendations and
comparisons. We first addressed user’s sensitivity to conciseness and the correspondence be-
tween algorithmic conciseness and user judgments of conciseness. Our expectation was users
would discriminate between different descriptions in terms of conciseness. More specifically,
we expected that outputs we had operationalized asconciseshould be judged as providing too
little information, outputs operationalized assufficientshould be judged as providing the right
amount of information, and outputs operationalized asverboseshould be judged as providing
too much information.

A second focus was the relation between conciseness and information presentation strategy.
Contrast the recommendations inFig. 11with the comparisons inFig. 15for varying values ofz.
Of the two strategies, comparisons inherently contain more information than recommendations,
because they mention multiple options and their attributes. We should therefore expect users
to judge comparisons as more verbose than recommendations.

This experiment used all six tasks described above. As before, an initial web page set up
the task by showing the MATCH system’s graphical response for a user query, and then the
page showed the user circling some subset of the restaurants and asking the system to first
compare and then recommend options from the circled subset. Subjects saw one page each for
recommend and compare, for each task. In this case, on each page, they saw multiple system
responses of differing conciseness. We operationalizedconciseresponses as az-value of .3,
sufficientresponses as az-value of−.7, andverboseresponses as az-value of−1.5. As before,
the order of the tasks, and the order of appearance of strategies within the task was consistent
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across subjects. However, the order of presentation of conciseness variants was randomized
from page to page. For each instance of a recommend, or compare, the subject was asked
to state her degree of agreement (on a five-point Likert scale) with the following statement,
intended to determine the conciseness of the response:when choosing a restaurant, the amount
of information provided by the system utterance is; (1) far too little, (2) too little, (3) neither
too little nor too much, (4) too much, (5) far too much.

Twenty-one subjects completed the experiment in approximately half an hour per subject.
All were fluent English speakers. Most eat out moderately often (11 eat out 3–5 times per
month, 10 6–10 times). All subjects currently live in northern New Jersey or in Manhattan.
Fourteen described themselves as somewhat or quite familiar with Manhattan, while seven
were not very familiar with it.

5.4. Conciseness experimental results

We analyzed the user data using ANOVA. Independent measures were algorithmic concise-
ness (verbose, sufficient, concise), and strategy (recommend, compare). Using standard Likert
scale procedures we first transformed the elicited conciseness judgments into a linear scale, so
that an output judged to providefar too little informationwas scored−2, too little−1,neither
too much nor too little0, too much+1, andfar too much+2. The transformed measure of
conciseness was used as the ANOVA dependent measure.

Fig. 18indicates the relationship between algorithmic conciseness and user judgments of
conciseness. It shows both that users are sensitive to conciseness and that user judgments
paralleled our algorithmic implementation. Consistent with our hypothesis, outputs generated
as concise were more likely to be judged as having too little information than those generated
to be sufficient, which in turn were likely to have less information than those generated to
be verbose (F (2, 750)= 220.8; P < .0001), with post hoc tests showing judged differences
between algorithmically concise and sufficient, and between algorithmically sufficient and
verbose (bothP < .0001). These data clearly show that we have algorithmic control over
conciseness.

Fig. 18. Relationship between algorithmic conciseness and user evaluations by strategy.
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Nevertheless,Fig. 18also indicates the need for further calibration of the algorithm. If our
algorithmic calibration had been correct, we would have expected verbose outputs to have
been judged as providing too much information (scored as +1 or greater on the Likert scale),
sufficient outputs judged as 0, and concise as−1 or less. Results show that sufficient outputs
require little further calibration as they are judged at−.2 (where “0” indicates exactly the right
amount of information), but those generated to be verbose are judged as .5, and those generated
to be concise are generated as−1.2. These observations suggest that we may be providing
marginally too much information for our concise outputs and too little for our verbose outputs.
This would imply a need to tune the algorithm, in particular by adding more information to
the sufficient statements.

Our second hypothesis concerned the relationship between judged conciseness and strategy.
Fig. 18also shows as predicted that recommendations are judged to be more concise than com-
parisons (F (1, 750)= 19.7;P < .0001). Furthermore, there is an interaction between strategy
and judgments (F (2, 750)= 10.0; P < .0001), with the main difference being accounted for
by users’ tendency to judge verbose comparisons as containing more information than verbose
recommendations (post hoc test,P < .05). Possibly this was because verbose comparisons
mention as many as 10 facts, and this is perceived to be a large additional memory burden.
Finally, despite our tailoring of information content to individual users’ preferences, there
are large individual differences between users in terms of their perception of conciseness,
suggesting that the conciseness parameter itself should be user-tailored.

6. Conclusions and future work

This paper describes an approach to user tailored generation of evaluative responses for
multimodal dialogue systems that is based on quantitative user models. We address a pressing
problem for current systems, namely that information presentation strategies overload users,
and do not effectively support them in making decisions about complex options Walker et
al. (2002a). We present new algorithms for information presentation based on multi-attribute
decision theory that focus the presentation on small sets of options and attributes that are
significant and salient to the user. These algorithms enable both option and attribute selection
for two different dialogue strategies: recommendations and comparisons. We have implemented
the algorithms for generating content plans for these strategies in SPUR, a content planner for
the MATCH dialogue system. Furthermore our theoretical framework allows parameters of
the content plans to be highly configurable: allowing us to generate differently concise content
plans, that highlight and compare different sets of attributes and options.

Our results show that user models based on multi-attribute decision theory generalize across
domains. Techniques that work for other domains are also effective in the restaurant domain,
as well as being effective for multi-modal dialogue, where the requirements for interactive
information presentation are different from those for text presentations. We have also extended
user-tailored generation to include comparisons as well as recommendations. Our results show
the effects of user-tailoring on these strategies. Users rated responses generated using their
Own Model much more highly than those generated with the Random Model.
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We also demonstrated effects of presentation mode. As we expected, text responses were
rated more highly than speech responses. Despite our attempts to prime text-to-speech pro-
nunciation, users complained about difficulty understanding restaurant names, which are often
foreign words. Contrary to our expectations, we found that the effect of tailoring was no greater
in the speech than the text condition. However this may have been due to the fact that overall
ratings of responses were low in the speech condition so that effects may be observed in a
domain that is less demanding for text-to-speech. In support of this, we found that users who
ate out more frequently or who knew Manhattan better rated speech responses more highly.
This suggests that people who are familiar with restaurant names and general restaurant in-
formation are better able to overcome perceptual limitations associated with understanding
text-to-speech output.

We also successfully implemented a strategy for controlling presentation conciseness, and
showed that outputs from our algorithm were consistent with user judgments of conciseness,
although some fine tuning of the algorithm will be necessary to exactly map onto absolute user
judgments.

In the future we plan to conduct additional experiments in this framework. First of all, we
would like to test the effect of the user model and conciseness parameters on other variables
such as task completion, time to completion and user satisfaction, as in other work evaluating
spoken dialogue systems(Walker et al., 2002b). Another area of additional experimentation is
in the mapping between selected content and dialogue strategy. For example, we did not vary the
content plan templates for each strategy in this experiment, although in our own exploration we
identified various possibilities for each strategy. Additional experiments could alter different
aspects of the template, and explore subject preferences for the resulting output. In current
work, we are enriching SPUR’s ability to structure the selected content, and interfacing SPUR
to a sentence planner and surface realizer (Bangalore &Rambow, 2000;Stent,Prasad, &
Walker, 2004;Walker, Prasad, &Stent, 2003;Walker, Rambow, &Rogati, 2001b). We also
hope to conduct field trials of people using the system in a mobile environment.

Notes

1. Users were allowed to select up to five preferred and five dispreferred food types. This
simplification is motivated by the large number of food types available in New York City
and our requirement to keep the enrollment process short and simple.
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