
COGNITIVE SCIENCE 18, 233-263 (1995)

Computational Interpretations

of the Gricean Maxims

in the Generation of Referring Expressions

ROBERT DALE

Microsoft Institute for Advanced Software Technology, Australia

EHUD REITER

CoGenTex Inc., Ithaca, NY

We examine the problem of generating definite noun phrases that are appropri-

ate referring expressions: that is, noun phrases that (a) successfully identify the

intended referent to the hearer whilst (b) not conveying to him or her any false

conversational implicatures (Grice, 1975). We review several possible computa-

tional interpretotions of the conversational implicature maxims, with different

computational costs, and argue that the simplest may be the best, because it

seems to be closest to what human speakers do. We describe our recommended

algorithm in detail, along with a specification of the resources a host system must

provide in order to make use of the algorithm, and an implementation used in the

natural language generation component of the IDAS system.

1. INTRODUCTION

One of the most ubiquitous tasks in natural language generation is the
generation of referring expressions: phrases that identify particular domain
entities to the human recipient of the generation system’s output. In this
article, we examine the task of generating one particular kind of referring
expression, focusing on computational, algorithmic, and pragmatic issues
that would be more difficult to investigate in a broader study. Our hope is

An earlier version of this article was presented at the Fourteenth International Conference

on Computational Linguistics (Coling-92). The present version of the article has benefitted

from comments by Merrill Garrett, James Greeno, and Bonnie Webber. The work described
was carried out while both authors were at the Department of Artificial Intelligence, University

of Edinburgh, and R.D. was at the Centre for Cognitive Science, University of Edinburgh.

R.D. E-mail: rdale@microsoft.com. E.R. E-mail: ehud@cogentex.com.

Editor’s Note. In copyediting this article, British spelling and language have been retained
in order to preserve the style and form of its country of origin.

Correspondence and request for offprints should be sent to Robert Dale, Microsoft Insti-

tute for Advanced Software Technology, North Ryde, Sydney NSW 2113, Australia.

233

234 DALE AND REITER

that the conclusions we draw from this “micro-study,” in particular that
computationaIly simple interpretations of the Gricean maxims of conversa-
tional implicature (Grice, 1975) should be used, will also prove applicable to
other referring expression generation tasks.

The particular referring expressions which we study in this article have
the following characteristics.

1. They are linguistically realized as definite noun phrases (e.g., fhe red
cup), rather than pronouns, ore-anaphora, and other alternative
linguistic mechanisms used for reference.

2. They refer to physical objects (e.g., dogs and tables), rather than
abstract entities such as fields of mathematics.

3. They are solely intended to identify the target object to the hearer and
are not intended to satisfy any other communicative goal.

The Hack dog, the small skinny screw, and the upside-down cup are
examples of the kind of referring expressions which we included in our
study. One-anaphoric expressions (such as the red one), nominalisations
(such as the death of Caesar), and noun phrases containing material that
performs some communicative function other than referent identification
(as in a dangerous and hungry shark) are examples of referring expressions
which we did not examine in this study; we have, however, investigated
issues involved in generating such referring expressions in other work (Dale,
1992; Oberlander & Dale, 1991; and Reiter, 1990b, respectively).

There are many criteria that an algorithm which generates referring
expressions should satisfy; we are particularly concerned here with the
following:

1. The algorithm should generate referring expressions which satisfy the
referential communicative goal: After hearing or seeing the referring
expression, the human hearer or reader should be able to identify the
target object.

2, The algorithm should generate referring expressions which do not lead
the human hearer or reader to make false conversational implicatures in
the sense of Grice (1975).

3. The algorithm, if it is to be of practical use, should be computationally
efficient.

Previous work has tended to focus only on the first of these criteria. Our
goal was to take into account the second and third criteria as well and, in
particular, to investigate and evaluate different possible computational
interpretations of the Gricean maxims of conversational implicature. This
evaluation was based on (a) the computational cost of obeying each interpre-
tation, and (b) how closely each interpretation approximates the behaviour
of human speakers. We were also interested in establishing which aspects of

GENERATION OF REFERRING EXPRESSIONS 235

the process of referring expression generation can be characterised by a
general purpose algorithm, and which aspects are best left to domain-
dependent specification.

The structure of the article is as follows. In Section 2, we survey previous
work in the generation of referring expressions and elaborate on the issues
of concern in the present work. In Section 3, we examine four different com-
putational interpretations of Grice’s conversational maxims in the context
of the generation of referring expressions; we discuss both the computa-
tional complexity (expense) of these interpretations and how they compare
to what is known about how human speakers generate referring expressions.
In Section 4, we discuss in more detail the interpretation we find most appeal-
ing, because it is both fastest and (as far as we can tell) closest to what
human speakers do; we present this algorithm in a domain-independent
way, together with a description of the domain knowledge resources that
the algorithm needs. In Section 5, we present some concluding comments
and discuss briefly a number of areas in which more research needs to be
done.

2. THE ISSUES

2.1 Previous Work
Perhaps the best-known work in generating referring expressions has been
done by Appelt and Kronfeld (Appelt, 1985a, 1985b, 198%; Appelt &
Kronfeld, 1987; Kronfeld, 1986). Compared to our work, Appelt and Kronfeld
allowed much broader communicative goals but, on the other hand, paid
relatively little attention to conversational implicature and (especially) com-
putational cost. Some examples of referring expressions they studied which
had goals beyond simple identification are as follows:

(1) That scoundrel is the one who betrayed us.
(2) I met an o/d friend yesterday.

In (l), describing the intended referent as a scoundrel has the effect of infor-
ming the hearer that the speaker has a very low opinion of the person in
question; it is not intended to help the hearer identify a particular person
from a set of people. In (2), the speaker informs the hearer that the person
he or she met was an old friend but does not intend for the hearer to be able
to determine the exact identity of the person.

Appelt’s thesis work (Appelt, 1985a, 1985b) in fact allowed “referring
expressions” to satisfy any communicative goal that could be stated in the
underlying logical framework. Appelt constructed such referring expres-
sions using standard AI planning and theorem-proving techniques, with
very little concern being paid to computational efficiency issues. He also
said relatively little about conversational implicature, except to state that

236 DALE AND REITER

generations systems should attempt to generate short referring expressions
with a heuristic algorithm.

Goodman (1986) has looked at cases where inappropriate referring ex-
pressions are generated by human speakers and proposed a “Find What I
Mean” model for determining what object the speaker intended to refer to;
this work is more relevant to understanding referring expressions than to
generating them. Goodman was primarily interested in handling situations
where a referring expression was not a distinguishing description in the
sense explained later; although he briefly mentions conversational implica-
ture and overly specific descriptions, he does not seem to have looked at
these cases in as much detail.

Our previous work on generating definite noun phrases (NPs) that identify
physical objects is discussed in Section 3.1. We have also worked on generat-
ing other types of referring expressions. Dale (1992) has looked at the
generation of one-anaphoric referring expressions; and Dale and Haddock
(1991) have examined the generation of referring expressions that include
relations, as opposed to simple predicative properties. Oberlander and Dale
(1991) have looked at the problem of referring to eventualities. Reiter
(1990b) has looked at the problem of generating NPs that are intended to in-
form the hearer than an entity has certain properties, as opposed to simply
identifying the entity.

2.2 Satisfying the Referential Communicative Goal
In this article, we are only concerned with referring expressions whose sole
purpose is to identify an entity to the hearer.’ We follow Dale and Haddock
(1991) in assuming that a referring expression satisfies the referential com-
municative goal if it is a distinguishing description; that is, if it is an accurate
description of the entity being referred to, but not of any other object in the
current context set. We define the context set to be the set of entities that the
hearer is currently assumed to be attending to; this is similar to the set of
entities in the focus spaces of the discourse focus stack in Grosz and Sidner’s
(1986) theory of discourse structure. We also define the contrast set to be all
elements of the context set except the intended referent; this has also been
referred to as the set of potential distracters (McDonald, 1981).

Under this model, each property expressed in a referring expression can
be regarded as having the function of “ruling out” members of the con-
strast set. Suppose a speaker wants to identify a small black dog in a situa-
tion where the contrast set consists of a large white dog and a small black
cat. He or she might choose the adjective black in order to rule out the white

I We only use what Kronfeld (1986) called the modal aspect of Donnellan’s distinction

(Donnellan, 1966) between “referential” and “attributive” descriptions; that is, we are

examining descriptive NPs that are intended to identify an object to the hearer.

GENERATION OF REFERRING EXPRESSIONS 237

dog, and the head noun dog in order to rule out the cat; this would result in
the generation of the referring expression the black dog, which matches the
intended referent but no other object in the current context. The small dog
would also be a successful referring expression in this context, under the
distinguishing description model.

More formally, we assume that each entity in the domain is characterised
by a means of a set of attribute-value pairs. We will sometimes refer to an
attribute-value pair as a property. We assume that the semantic content of a
referring expression can also be represented as a set of attribute-value pairs.
We will use the notation <Attribute, Value> for attribute-value pairs; for
example, <colour, red> indicates the attribute of colour with the value
red. The semantic content of head nouns will be represented as the value of
the special attribute type: for example, <type, dog> .2

Let r be the intended referent, and C be the constrast set; then, a set L of
attribute-value pairs will represent a distinguishing description if the two
conditions in (3) hold:

(3) Cl: Every attribute-value pair in L applies to c That is, every element
of L specifies an attribute-value that r possesses.

C2: For every member c of C, there is at least one element I of L that
does not apply to c: That is, there is an I in L that specifies an
attribute-value that c does not possess. / is said to rule out c.

For example, suppose the task is to create a referring expression for Object1
in a context that also includes Object2 and Object3, where these objects
possess the following properties:

l Object1 : <type, dog > , <size, small > , < colour, black >
l Object2: <type, dog > , -c size, large > , < colour, white >
l Object3: <type, cat>, <size, small>, <colour, black>

* Any work in natural language generation is faced with the problem of deciding what kind
of input representation to start from; it is this that determines in large part how hard or how
easy the generation task will be. We assume that each attribute-value pair-that is, each
semantic constituent-can be realized as a syntactic constituent, for example, as an adjective
such as red or as a prepositional phrase such as wiG black eyes. In cases where one lexical item
can convey several properties, we assume that this lexical item can be represented by a single
attribute-value pair in the semantics, which may require creating a special attribute for this
purpose. Thus, for example, we assume that the semantic content of the bachelor lawyer is
represented as { <type, lawyer>, <marital-status, bachelor r}, rather than by means of
more primitive elements such as { <type, lawyer>, <sex, male>, <age, adult>, <married,

false>}). We leave the question of how one might generate from these more primitive
representational elements for future work. This is ultimately rather unsatisfactory, of course,
because there will also be more complex structures we might want to compose out of the
elements we happen to have chosen here as primitives; but in the absence of any consensus on
what the “right” input representation is-whatever that means-we take the view that a level
of representation that is “just below the surface” is more appropriate than one whose elements
are some set of semantic primitives based on intuition.

238 DALE AND REITER

In this situation, r=Objectl and C= (Object2, Object31. The content
of one possible distinguishing description is then (<type, dog> , <colour,

black> } , which might be realized as the black dog Object1 possesses these
properties, but Object2 and Object3 do not (Object2 does not have the
property -xolour, black> , while Object3 is ruled out by <type, dog>).

With this definition, finding a distinguishing description is essentially
equivalent to solving a set cover problem. Let P be the set of properties that
r possesses, and let ~~~e~O~~(~) be the subset of C that is ruled out by each
p in P. If ~u~e~Out(~) is not the empty set, then we say that p has some
discriminatory power.3 Then, L will be a distinguishing description if the
union of RulesOut(for every I in L, is equal to C (i.e., if L specifies a set
of RulesOut sets that together cover all of c).

The identification of the problem of finding a distinguishing description
with the problem of finding a set cover is a useful one, because it enables us
to use the algorithms and complexity results derived by theoretical com-
puter scientists for set cover problems. For example, researchers in that area
have proven that finding the minimal size cover is NP-Hard (Garey &
Johnson, 1979), which tells us that finding the smallest possible referring
expression is an NP-Hard task and, thus, probably computationally im-
practical. ~gorithm researchers have also proposed various computationally
efficient techniques for finding “close to minimal” set covers, such as the
greedy heuristic (Johnson, 1974); such algorithms can be adapted to the
referring expression generation problem if desired.

2.3 Hearer Models
Dale (1992) suggested that the generation of referring expressions is governed
by three principles, referred to as the principles of adequacy, efficiency,
and sensitivity; these are Gricean-like conversational maxims framed from
the point of view of the specific task of generating referring expressions.
The first two of these principles are primarily concerned with saying neither
too much or too little: The principle of adequacy requires that a referring
expression should contain enough information to allow the hearer to iden-
tify the referent, and the principle of efficiency requires that the referring
expression should not contain unnecessary information. The principle of
sensitivity, however, has a different concern: It specifies that the referring
expression constructed should be sensitive to the needs and abilities of the
hearer or reader. Accordingly, the definition of a distinguishing description
specified in (3) above should really include a third component:

(4) C3: The hearer knows or can easily perceive that conditions Cl and C2
hold.

3 See Dale (1992) for a referring expression generation algorithm that measures discrimina-
tory power by assigning specific numerical values to attribute-value pairs based on their ability
to distinguish the intended referent in context.

GENERATION OF REFERRING EXPRESSIONS 239

In other words, the hearer must realize that the distinguishing description
matches the intended referent and none of the contrast objects, and ideally
this realisation should not require a large perceptual or cognitive effort on
the hearer’s part. Thus, a distinguishing description should not mention a
property that is not directly perceivable unless the hearer already knows the
value of the attribute for the intended referent and for the contrast objects.
If would be inappropriate, for example, to mention the manufacturer of a
component in a distinguishing description if the hearer could only deter-
mine the manufacturer by dismantling the component. Appelt (1985b, p. 6)
gave a good example of a referring expression which satisfies, in our terms,
conditions Cl and C2 but not C3: He described a scenario in which a
speaker tells a hearer (whom she has just met on the bus) which bus stop to
get off at by saying “Get off one stop before I do. ” This may be a uniquely
identifying description of the intended referent, but it is of little use without
a supplementary offer to indicate the stop.

Furthermore, as Goodman (1986, p. 285) pointed out, a distinguishing
description should not use a very specific attribute value if the hearer is not
familiar enough with this value to be able to distinguish it from other,
similar, attribute values; there is no point, for example, in describing an
object as the magenta plug if the hearer is not familiar enough with the
meaning of magenta to be able to distinguish a magenta plug from a
maroon plug.

A good referring expression generation algorithm should therefore be
able to take into account what is known about the hearer’s knowledge and
perceptual abilities. This can be done at the simplest level by restricting the
attributes mentioned in a referring expression to those which most human
hearers are presumed to easily be able to perceive, such as colout and
size. A more general solution is to allow the generation algorithm to issue
appropriate queries to a hearer model at run time; the algorithm we describe
in Section 4 does this by calling a special UserKnows function.

2.4 Avoiding False Implicatures
Some distinguishing descriptions can be inappropriate referring expressions
because they convey false implicatures to the human user. This is illustrated
by the following examples of referring expressions which a speaker might
use to request that a hearer sit by a table:

(5) a. Sit by Ihe table.
b. Sit by the brown wooden table.

If the context was such that only one table was visible, and this table was
brown and made of wood, utterances (Sa) and (5b) would both be distin-
guishing descriptions that unambiguously identified the intended referent to
the hearer; a hearer who heard either utterance would know where to sit.

240 DALE AND REITER

However, a hearer who heard utterance (5b) in such a context might make
the additional inference that it was important to the understanding of the
discourse that the table was brown and made of wood; for, the hearer might
reason, why else would the speaker include information about the table’s
colour and material that was not necessary for the reference task? If the sole
purpose of the referring expression was to identify the table (and not to pro-
vide additional information about the table for some other purpose), then
the inference is an example of a conversational implicature caused by a
violation of Grice’s maxim of Quantity (Grice, 1975).

Of course, in many contexts, the speaker may indeed have additional
communicative goals beyond simple identification. For example, if the
speaker has the additional communicative goal of warning the hearer not to
put her or his elbows on the table, it is perfectly appropriate to generate a
referring expression such as?

(6) Sit by the newly painted table.

In this case, the hearer will (hopefully) make the inference that he or she
shouldn’t touch the table, but because the speaker intended for the hearer to
make this inference, this is not a fake implicature. The point is that the
referring expression should not lead a hearer to make unintended in-
ferences, especially if these inferences are not true.

In order to simplify the analysis, in this article we restrict our discussion
to referring expressions that are only intended to identify an object and have
no other communicative purpose; we do not examine situations where a
speaker has nonidentificational communicative goals such as warning a
hearer not to touch a table. A complete model of the generation of referring
expressions would of course need to consider more general communicative
goals.

2.4.1 The Gricean Maxims
We base our analysis of unwanted inferences on Grice’s maxims of conversa-
tional implicature, which are listed in Figure 1. In the context of the referring
expression generation task, Grice’s maxims can be interpreted as follows:

Quality: A referring expression must be an accurate description of the intended
referent.

Quantity: A referring expression should contain enough information to enable
the hearer to identify the object referred to, but not more information.

Relevance: A referring expression should not mention attributes that have no
discriminatory power and, hence, do not help distinguish the intended referent
from the members of the contrast set.

(This example, and our appreciation of its relevance to the current discussion, is owed to
Bonnie Webber .

GENERATION OF REFERRING EXPRESSIONS 241

Max-im of Quality: Tky to make your contribution one that is true. More specifically:

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

Maxtm of Quantity:

1. Make your contribution as informative as is required (for the current purposes of

the exchange).

2. Do not make your contribution more informative than is required.

Maxim of Relevance: Be relevant.

Maxim of Manner: Be perspicuous. More specifically:

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief (avoid unnecessary prolixy).

4. Be orderly.

Figure 1. The Gricean Maxims (excerpted from Grice, 1975. p. 65).

Manner: A referring expression should be short whenever possible.J

An additional source of conversational implicatures is the failure to use
words that correspond to basic-level classes (Cruse, 1977; Rosch, 1978).
Consider the referring expressions used in (7a) and (7b):

(7) a. Look at the dog.
b. Look at the pit bull.

In a context where there is only one dog present, the hearer would normally
expect utterance (7a) to be used, because dog is a basic-level class for most
native speakers of English. The use of utterance (7b) might implicate to the
hearer that the speaker thought it was relevant that the animal was a pit bull
and not some other kind of dog (perhaps because the speaker wished to
warn the hearer that the animal might be dangerous); if the speaker had no
such intention, she or he should avoid using utterance (7b), despite the fact
that it fulfills the referential communicative goal.

Basic-level classes are only one example of the lexical preferences that
human hearers have and that generation systems should obey if possible
(Reiter, 1991). A general lexical preference rule can be stated as a fifth maxim
of conversational implicature:

Lexical Preference: Use basic-level and other lexically preferred classes
whenever possible.

’ This corresponds to the Brevity submaxim of the Manner maxim; the other Manner sub.
maxims will not be discussed here.

242 DALE AND REITER

3. WHAT DOES IT MEAN TO OBEY GRICE’S MAXIMS?

3.1 Four Computational Interpretations of the Maxims
A natural language generation system must be based on precise computa-
tional rules, not the vague principles presented in Section 2.4, and there are
many possible computational interpretations of the Gricean maxims. In
general terms, any distinguishing description that is used as a referring ex-
pression will automatically satisfy the Quality maxim (i.e., it will be a
truthful description of the intended referent) and the first half of the Quan-
tity maxim (i.e., it will provide enough information to identify the intended
referent). The remaining requirements can be summarized as follows:

l The referring expression should not include unnecessary information
(the Maxim of Quantity).

l The referring expression should only specify properties that have some
discriminatory power (the Maxim of Relevance).

. The referring expression should be short (the Maxim of Brevity).
l The referring expression should use basic-level and other lexically

preferred classes whenever possible (Lexical Preference).

Note that the Brevity requirement in a sense subsumes the Quantity and
Relevance requirements, because a referring expression that contains un-
necessary or irrelevant information will also probably be longer than re-
quired. Given their rather vague definitions, it is not too surprising that the
different maxims overlap and interact.

We will discuss four possible computational interpretations of these re-
quirements, which we refer to as the Full Brevity Interpretation, the Greedy
Heuristic Interpretation, the Local Brevity Interpretation, and the Incre-
mental Algorithm Interpretation. The first three interpretations have been
proposed in previous research; the last corresponds to the algorithm pre-
sented in this article.

The computational cost of generating referring expressions that satisfy
each of these interpretations is summarized in Figure 2. These costs are
stated in terms of the following parameters:

n, = the number of attributes that are available to be used in a referring ex-
pression (i.e., the number of properties known to be true of the intended
referent):

nd = the number of distracters in the current context;
n/ = the number of attributes mentioned in the final referring expression.

For instance, recall the example discussed in Section 2.2; the task is to
create a referring expression for Object1 in a context that also includes
Object2 and ObjecD, where these objects possess the following properties:

l Object1 : <type, dog > , <size, small > , < colour, black >
l Object2: <type, dog > , <size, large > , < colour, white >
l Object3: <type, cat > , <size, small > , < colour, black>

GENERATION OF REFERRING EXPRESSIONS 243

Interpretation Theoretical complexity Typical run-time (Simple algorithm)

Full Brevity (Dale, 1989) NP-Hard CC It.“’

Greedy Heuristic (Dale, 1989) polynomial = n,n#q
Local Brevity (Reiter, 1990a) polynomial = n,n&Q
Incremental Algorithm polynomial = n,jn,

n. = the number of properties known to be true of the intended referent
nd = the number of distractors in the current context
nl = the number of attributes mentioned in the final referring expression.

Figure 2. Some interpretotions of the maxims and their costs.

In this situation, the values of the cost parameters are

n, = 3 (type, size, and colour);
nd = 2 (Object2, Object3); and
nl =2 (<type,dog> , <colour,blackb).

Of course, this example is very simplistic. In more realistic situations, nr,
the number of attributes mentioned in the referring expression, will still
typically be fairly small but may reach 4 or 5 in some circumstances (for
example, the small black furry dog, or the upside-down scratched white
porcelain cup). However, in some situations the number of distracters, nd,

can be 50 or more (e.g., consider identifying a particular book on a book-
shelf, or a particular switch on a complex control panel); and n,, the
number of attributes that are available to be used in the referring expres-
sion, can easily reach 10 or 20, because almost any visually perceivable attrib-
ute can be used to identify a physical object (i.e., not just colour and size,
but also material, shape, orientation, texture, and so on).

3.1.1 The Full Brevity Interpretation
Dale (1989, 1992) suggested that a generation system should generate the
shortest possible referring expression: that is, a referring expression that
mentions as few attributes as possible. We will refer to this as the Full Brevity
Interpretation of the maxims. A referring expression that satisfies the Full
Brevity Interpretation will automatically satisfy a very strict interpretation
of the Quantity, Relevance, and Brevity maxims. Unfortunately, finding
the shortest possible referring expression is an NP-Hard task (as discussed
in Section 2.2), and this interpretation is therefore probably too computa-
tionally expensive to use in a natural language generation system operating
in a domain of any real complexity.

For readers who are uncomfortable with the concept of NP-Hardness, it
may be worthwhile to examine the computational expense of a specific algo-
rigthm that generates referring expressions that satisfy Full Brevity. The
most straightforward such algorithm simply does an exhaustive search: It
first checks if any one-component referring expression is successful, then it

244 DALE AND REITER

checks if any two-component referring expression is successful, and so on.
The expected run time of this algorithm is roughly?

If na>> nl, this will be of order = nil.
For the example problem discussed in Sections 2.2 and 3.1, na is 3 and nr

is 2, so the straightforward brevity algorithm will take only six steps to find
the shortest description. In more realistic situations, however, things get
much worse. For example:

l Suppose nl= 3, and na = 10: then, 175 descriptions must be checked.
l Suppose nl= 4, and na = 20: over 6,000 descriptions must be checked.
l Suppose nl= 5, and na = 50: over 2,000,OOO descriptions must be checked.

A straightforward implementation of the Full Brevity Interpretation,
then, seems prohibitively expensive in at least some circumstances. Because
finding the shortest description is NP-Hard, it seems likely (existing
complexity-theoretic techniques are too weak to prove such statements) that
all algorithms for finding the shortest description will have similarly bad
performance “in the worst case.” It is possible that there exist algorithms
that have acceptable performance in almost all “realistic” cases; any such
proposed algorithm, however, should be carefully analyzed to determine
those circumstances in which it will fail to find the shortest description or in
which it will take exponential time to run. Similarly, systems could be built
that used the Full Brevity Interpretation in simple contexts (low na and nl)
but switched to a different interpretation in complex situations; this again
should be carefully explained to potential users.

Any discussion of the impact of the above analysis for human generation
of referring expressions must also be hedged with caveats. It is possible that
the brain’s parallelized architecture makes feasible algorithms that would be
impractical on a sequential computer; there may also be psychological limit-
ations on the number of properties and distracters that the human language
processor is capable of considering, which would add an extra complication
to the discussion. The available evidence, however (see Section 3.2.1), sug-
gests that humans do not use the Full Brevity Interpretation, at least in the
experimental contexts that have been tested to date.

6 This is just the number of potential descriptions that must be checked. The cost of check-
ing each potential description to see if it is a distinguishing description is assumed to be small,
because in most cases the system will probably quickly determine that the candidate description

does not rule out all of the distracters.

GENERATION OF REFERRING EXPRESSIONS 245

Let L be the set of properties td be real&d in our description; let P be the set of properties

known to be true of our intedded referent r (we assume that P is non-empty); and let C be

the set of distracters (the contrast set). The initial conditions are thus as follows:

l c = {(an &tractors)};

l P = {(all pmperties tme of r));

l L={}

In order to describe the intended referent T with respect to the contrast set. C, we do the
following:

1. Check Success:

if ICI = 0 then return L as a distinguishing description

elseif P = 0 then fail

else got0 Step 2.

2. Choose Property:

for each p; E P do: Ci + C f~ {Z)pi(Z)}
Chosen property is pj, where Cj is the smallest set.

got0 Step 3.

3. Extend Description (wrt the chosen pj):

LcLU{Pjl
C + Cj
pcp-tPjl
got0 Step 1.

Figure 3. An algorithm for the Greedy Heuristic Interpretation.

3.1.2 The Greedy Heuristic Interpretation
Dale (1989, 1992) proposed a referring expression generation algorithm that
was essentially a variant of Johnson’s (1974) greedy heuristic for minimal
set cover; we will refer to this as the Greedy Heuristic Interpretation of the
maxims.’ A version of this algorithm is shown in Figure 3. Dale also sug-
gested meeting the lexical preference criteria by only using basic-level attribute
values,

This interpretration is much easier and quicker to implement than the
Full Brevity Interpretation discussed earlier, but such an algorithm will not
in all cases produce the referring expression that uses the fewest possible at-
tributes. Suppose, for example, we have seven cups, with internal names
Object1 through Object7 and with the following properties:

l Object1 : <size, large > , < colour red > , <material, plastic >
l Object2: <size, small > , < colour red > , <material, plastic >

’ Appelt (1985a. pp. 117-118) also suggested that referring expressions should be generated
by a heuristic approximation to Full Brevity, although he did not specify any particular
algorithm.

246 DALE AND REITER

l Object3: <size, small > , < colour red > , <material, paper >
l Object4: <size, medium > , < colour red > , < material, paper
l Object5: <size, large > , < colour green > , < material, paper >
l Object6: <size, large>, <colour blue> <material, paper>
l Object7: <size, large>, <colour blue>, <material, plastic>

The algorithm as specified first selects plastic, then selects large or red, and
finally selects red or large (whichever of the two was not selected in the se-
cond step). The result, once the head noun has been added, is the noun
phase the large redpiastic cup; however, the true minimal description is the
large red cup.

From a computational perspective, the greedy heuristic requires nl passes
through the problem, and each pass requires checking each of the na poten-
tial attributes to determine how many of the nd distracters they rule out.
The total running time is therefore of the order = nanm.

3.1.3 The Local Brevity Interpretation
Reiter (1990a) proposed that referring expression generation systems should
generate utterances that were maximal under the following preference rules:

No Unnecessary Components: All components of a referring expression must
be necessary to fulfill the referential goal. For example, the small black dog is
not acceptable if the black dog is a distinguishing description, because this
means small is an unnecessary component.

Local Brevity: It should not be possible to produce a shorter referring expres-
sion by replacing a set of existing components by a single new component. For
example, the sleeping female dog should not be used if the small dog is a
distinguishing description, because the two modifiers sleeping and female can
be replaced by the single modifier small.

Lexical Preference: Basic-level and other lexically preferred words (Reiter,
1991) should be used whenever possible.

We will refer to Reiter’s interpretations of the maxims as the Local Brevity
Interpretation. The term “component” in Reiter’s preference rules can be
interpreted either semantically (i.e., each attribute-value pair is a compo-
nent) or syntactically (e.g., each open-class word in the surface form is a
component). Reiter pointed out that defining components in syntactic
terms leads to computationally very expensive implementations and, hence,
suggests using a semantic definition.

If a semantic interpretation of component is used and the lexical prefer-
ence relation meets certain constraints (Reiter, 1990a) then a referring ex-
pression that meets Reiter’s conditions can be constructed by a simple
iterative algorithm. This algorithm starts with an initial distinguishing
description and checks to see if a new distinguishing description can be
formed from the current description by applying any of the preference rules
(i.e., by removing an attribute, replacing two or more attributes by a single

GENERATION OF REFERRING EXPRESSIONS 247

attribute, or replacing a value by a lexically preferred value). If so, the
algorithm iterates with the new description; if not, the current description
must satisfy the preference rules and, hence, can be uttered.

In computational complexity terms, the algorithm always runs in poly-
nomial time. The algorithm requires an initial distinguishing description; if
the Greedy Heuristic is used to generate the initial description, this will re-
quire time = n&j&?/. The iterative improvement steps can also be executed in
this order of time,8 so the total cost of the algorithm, including both
forming the initial description with the Greedy Heuristic and performing
the optimization passes, will also be of order 5: W?d?i%

3.1.4 Incremental Algorithm Interpretation
The Incremental Algorithm Interpretation is embodied in the algorithm
presented in Section 4 of this article. This algorithm simply sequentially
iterates through a (task-dependent) list of attributes, adding an attribute to
the description being constructed if it rules out any distracters that have not
already been ruled out, and terminating when a distinguishing description
has been constructed. This algorithm has an expected typical-case run time
of about ndn/; that is, it is faster than the previous algorithms by roughly a
factor of na, the number of attributes that are available to be included in a
referring expression.

This is a direct consequence of the fact that the Incremental Algorithm
does not attempt to look for optimal attributes that rule out as many
distracters as possible but, rather, simply iterates through the list of
available attributes in a fixed order.

3.2 What Do People Do?
Human speakers presumably face at least some of the computational limita-
tions that computer natural language generation systems face, so it is useful
to examine the kinds of referring expressions they generate. Human hearers
also expect to encounter the kind of referring expressions generated by
human speakers, so a natural language generation system may be easier to
use if it generates referring expressions that are similar to those generated by
human speakers.

’ Checking the Local Brevity rule is the most time-consuming operation; one simple way of
doing this is to replace in turn each of n, attributes in the current description by each of the
(n,-no) attributes not mentioned in the description, and then check if this forms a
distinguishing description; if so, the system then needs to determine if any further attributes

can also be removed, thus producing a shorter distinguishing description. If we assume that in
most cases the modified descriptions will not be distinguishing descriptions, so that the second

stage is rarely necessary, each optimization pass will require on the order of nandn/ steps. The
Greedy Heuristic is fairly efficient, so in the great majority of cases only one or two
optimization iterations will be necessary; at least one such must always be done, to verify that
no preferred description exists.

248 DALE AND REITER

3.2.1 Psychological Evidence
We have looked in some detail at the psychological literature on the human
generation of referring expressions (e.g., Ford & Olson, 1975; Pechmann,
1989; Sonnenschein, 1985; Whitehurst, 1976; Levelt, 1989, pp. 129-134,
provides a useful summary of much of this work). Two salient points that
emerge from this research are:

Observation 1: Human speakers in many cases include unnecessary modifiers
in the referring expressions they construct.

Observation 2: Human speakers can begin to utter a referring expression
before they have finished scanning the set of distracters.

Observation 1 is supported by evidence in all of the studies cited above. For
example, in a typical experiment, a participant is shown a picture containing
a white bird, a black cup, and a white cup and is asked to identify the white
bird; in such cases, participants generally produce the referring expression
the white bird, even though the simpler form the bird would have been
sufficient .9

Observation 2 is supported by eye-tracker experiments carried out by
Pechmann (1989); Pechmann’s experiments are similar to the one described
above, except that the movements of the participant’s eyes are recorded.

The two points may be connected, because an algorithm that begins out-
putting a referring expression before it has completed scanning the set of
distracters can easily produce referring expressions that contain un-
necessary modifiers. In the above example, for instance, one could imagine
a speaker scanning the black cup and deciding to use the adjective white to
rule it out, and then scanning the white cup and deciding to use the noun
bird in order to rule it out; bird also rules out the first distractror (the black
cup), and hence its presence makes white unnecessary, but the speaker can-
not “unsay” white if he or she has already uttered this word. In
McDonald’s (1981, 1983) terminology, Pechmann’s data support the hypoth-
esis that human speakers generate referring expressions incrementally and
indelibly; they make certain decisions about content before they have finished
computing the entire referring expression and do not backtrack and undo
these decisions if they later turn out to produce a nonoptimal utterance.

There are other possible explanations for the inclusion of unnecessary
modifiers. For example, the speaker may wish to make it as easy as possible
for the hearer to identify the object and believe that including extra modifiers

9 Merrill Garrett (personal communication) observed that experiments of this kind may not

be valid for our purposes, because the experimental participant may assume that the stimulus
carries only properties which are relevant for the purposes of identification, and the properties

being explored by the experimenter may therefore take on an unnatural degree of salience. As

always, in such contexts, we must be wary of assuming that the experimental results tell us
anything about behaviour in more natural situations.

GENERATION OF REFERRING EXPRESSIONS 249

may be helpful in this regard. Thus, for instance, the speaker may believe
that it is easier for the hearer to identify an object if it is referred to as a
white bird rather than simply as a bird, because colour may be more imme-
diately perceptible than genus.

Another possible explanation is that speakers may in some cases use
precompiled “reference scripts” instead of computing a referring expres-
sion from scratch; such reference scripts would specify a set of attributes
that are included as a group in a referring expression, even if some members
of the group turn out to have no ~scriminatory power in the current con-
text. For example, the speaker might have noticed that in past situations of
a similar nature, an effective referring expression could be formed with the
colour and type attributes and hence simply include these attributes as a
group in the referring expression, without checking to see whether each in-
dividual member of the group was in fact necessary in the current context.

The first two explanations would account for the inclusion of modifiers
that have a non-null RulesOut value, that is, modifiers that rule out at least
one distractor (such a modifier is unnecessary if the distracters it rules out
are also ruled out by other components of the referring expression). The
reference-script explanation, in contrast, might justify the inclusion of
modifiers that have no discriminatory power, that is, modifiers that do not
rule out any distractor (e.g., white would be such a modifier if all the objects
in the contrast set shared with the intended referent the property) aolour,
white>). Ford and Olson (1975) have observed that children do not seem to
include modifiers that have no discriminatory power, but this was a post
hoc comment, not a properly tested hypothesis, and in any case may not
generalize to adult speakers. Further psycholinguistic research is needed to
clarify this issue.

Of the four computational interpretations of the Gricean maxims pre-
sented in Section 3.1, only the Greedy Heuristic and Incremental Algorithm
interpretations would produce behaviour (1) above: Full Brevity and Local
Brevity would never include unnecessary modifiers (e.g., they would never
produce white bird when bird would suffice). The Greedy Heuristic (as well
as the Full Brevity and Local Brevity interpretations) is incompatible with
Observation 2: It requires the set of distracters to be considered as a whole
and cannot produce partial output when the set of distracters has only been
partially scanned. Thus, of the four interpretations proposed in Section 3.1,
the Incremental Algorithm seems closest to what human speakers do (and
indeed we designed this algorithm in the light of Observations 1 and 2).

The fact that human speakers include redundant information in their
referring expressions suggests that, at least in some situations, and in con-
trast to our discussion of example (5) in Section 2.4, human hearers will not
make unwanted implicatures from the presence of the unnecessary modi-
fiers. We currently have insufficient linguistic and psycholinguistic knowledge

250 DALE AND REITER

to let us predict exactly when human hearers will or will not make conversa-
tional implicatures from *‘violations” of the maxims, but clearly it is unnec-
essary for a natural language generation system to ensure that its output
never contains redundant information.

3.2.2 Some Additional Hypotheses
Unfortunately, the psychological data available do not provide enough in-
formation to tightly constrain the computational models we might build,
For working systems, there are further questions to which we require answers.
Ultimately the relevant data may be obtained from experimentation and
from corpus analysis, but in the interim, we will make do with a number of
plausible hypotheses. These hypotheses are partially based on a preliminary
analysis of a transcript of a dialogue between two humans assembling a
piece of garden furniture.‘*

For our purposes, we are pa~i~ularly interested in questions of modifier
choice; if a distinguishing description can be formed by adding any one of
several modifiers to a head noun, which modifier should be used? In partic-
ular, we asked the following questions:

I. Faced with a choice, which attribute should be used? Suppose the smew
is not a distinguishing description, but each of the expressions fhe staff
screw, the black screw, and the screw made in Korea is; which attribute
will be chosen?

2. Is it preferable to add a modifier or to use a more specific head noun?
For example, is it better to say the small screw or the woodscrew?”

3. Should relative or absolute adjectives be used? For example, is it better
to say the Eang screw or Ihe three-kc& screw?

The following hypotheses seem intuitively plausible for situations involving
spoken, face-to-face language:

1. Human speakers prefer to use adjectives that describe easily perceptible
properties such as size, shape, or colour in referring expressions. In the
transcript, for example, referring expressions such as fang screw, little
dowel, and big bolt were common; no referring expression mentioned a
property that was not visually perceptible.

2. Human hearers sometimes have trouble determining if an object belongs
to a specialized class. In the transcript we examined, for example, when
the written instructions used specialized terms like the lag screw, in
many cases one of the human assemblers had to explain to the other

la The transcript was made by Phil Ggrc and John Batali from a videotape taken by Candy
Sidner; we acknowledge their contribution in allowing us to use it.

” There is also the question of whether one should use a modifier-noun combination or a
more specific noun with the same semantics: consider zrrrmarriPd man as compared to Mrheior.
We wit1 not consider this question here.

GENERATION OF REFERRING EXPRESSIONS 251

assembler that this meant the long screw. If there is any doubt about a
human hearer’s ability to distinguish objects that belong to a specialized
class, it is better for a generation system to add an explicit modifier to
the referring expression, and thus, for example, produce the long screw
instead of the lag screw.

3. Human speakers seem to prefer to use relative adjectives, and human
hearers seem to have less trouble understanding them. However, human-
written instructional texts sometimes use absolute adjectives instead of
relative ones; this may be a consequence of the fact that writers cannot
predict the context in which their text will be read and, hence, how
readers will interpret relative adjectives. This was very evident in the
transcript. The written assembly instructions in all cases used absolute
modifiers, for example, 3 l/4 ’ bolt.‘* In contrast, the human assemblers,
unless they were reading or discussing the written instructions, in all
cases used relative modifiers, such as the long bolt.

Of course, an extensive corpus analysis across a broad range of discourse
types would be required in order to validate these observations, but for the
moment they constitute a plausible way of constraining further our choice
of computational models.

3.3 Evaluation of the Different Interpretations of the Maxims
In light of the insights gained from our analyses of the relevant psychological
research, and the hypotheses presented herein, we are now in a position to
evaluate the four different strategies for creating computational interpreta-
tions of the Gricean maxims presented in Section 3.1. We are particularly
interested here in the way in which the Brevity submaxim is interpreted.

The Full Brevity Interpretation: This interprets Brevity in a straightforward
and literal way and ignores computational difficulties. So, “be brief” becomes
“use the shortest possible referring expression,” which is an NP-Hard task
and thus very expensive to implement.

The Greedy Heuristic Interpretation: This acknowledges the computational
difficulty of implementing a literal version of Brevity and uses a well-known
approximation algorithm to find a distinguishing description that hopefully is
not much longer than the shortest possible referring expression.

The Local Brevity Interpretation: This acknowledges the computational diffi-
culty of implementing a literal version of Brevity and uses a variant of Brevity
which can be implemented with a polynomial time algorithm. One major dif-
ference between the Local Brevity and Greedy Heuristic interpretations is that
it is possible to state in declarative terms what properties a referring expression
must have in order to satisfy the Local Brevity Interpretation (“it should not

I2 The symbol ” is an abbreviation for inch.

252 DALE AND REITER

be possible to produce a shorter referring expression by replacing a set of exist-
ing components by a single new component”), whereas the Greedy Heuristic
Interpretation is characterised purely in algorithmic terms-its output cannot
be characterized in declarative terms except as something “close to” the
shortest possible referring expression. In other words, the Local Brevity Inter-
pretation is a declarative computationally tractable approximation to Full
Brevity, and the Greedy Heuristic Interpretation is an algorithmic computa-
tionally tractable approximation to Full Brevity.

The Incremental Algorithm Interpretation: This does not impose any explicit
rigorous Brevity constraint; instead, it attempts to mimic what human speakers
do (as far as this is known) and generates appropriate utterances by virtue of
this mimicry. This results in a simple and fast algorithm that does not have any
explicit brevity requirement coded into it.

In short, the above models represent four approaches to creating compu-
tational interpretations of the Gricean maxims:

Use a straightforward and literal interpretation of the maxims (the Full
Brevity Interpretation).
Use an algorithmic approximation to a straightforward interpretation
(the Greedy Heuristic Interpretation).
Use a declarative approximation to a straightforward interpretation
(the Local Brevity Interpretation).
Determine how human speakers generate text and build an algorithm
based on these observations (the Incremental Algorithm Interpretation);
the maxims are not explicitly taken into consideration, but presumably
an algorithm that mimics human speakers will obey the maxims as
much as human speakers do.

The straightforward literal interpretation of the maxims is too computa-
tionally expensive to use in a practical system. In previous papers, we have
argued for the approximation approaches, claiming that a computer system
should get as close as computationally feasible to the literal interpretation
of the maxims. We now believe, however, that even these algorithms may be
unnecessarily complicated and expensive in computational terms; if human
speakers can “get away” with producing referring expressions that do not
conform literally to the maxims, there is no reason why computer natural
language generation systems should be forced to conform to a literal reading.
Indeed, the behaviour of human speakers here may be a good reason for
computer systems not to adopt a literal reading.‘”

I3 Again, we must add a caveat with regard to the psychological evidence: It is quite possible
that people use a variety of different strategies as the situation demands. Ultimately, at most
we have evidence for human behaviour in situations which are sufficiently like the experi-
mental contexts discussed in Section 3.2.1.

GENERATION OF REFERRING EXPRESSIONS 253

The argument can be made that psychological realism is not the most
important consideration for developing algorithms for embodiment in com-
putational systems; in the current context, the goal of such algorithms should
be to produce referring expressions that human hearers will understand,
rather than referring expressions that human speakers would utter. The fact
(for example) that human speakers include redundant modifiers in referring
expressions does not mean that natural language generation systems are also
required to include such modifiers; there is nothing in principle wrong with
building generation systems that perform more optimizations of their output
than human speakers. On the other hand, if such beyond-human-speaker
optimizations are computationally expensive and require complex algor-
ithms, they may not be worth performing; they are clearly unnecessary in
some sense, after all, because human speakers do not perform them.

One could even argue that an algorithm based on psycholinguistic obser-
vations of human speakers may in fact be superior to one that attempts to
interpret the maxims as strictly as (computationally) possible. This would be
justified if one believed that the Gricean maxims were simply an approxima-
tion to the general principle of “if a speaker utters an unexpected utterance,
the hearer may try to infer a reason for the speaker’s failure to use the ex-
pected utterance”; under this perspective, a system that imitated human
behaviour would be more likely to generate “expected” utterances than a
system that simply tried to obey general principles such as brevity, relevance,
and so on. There is as yet insufficient data to determine whether the Gricean
maxims are in fact simply approximations to this general principle; psycho-
linguistic experiments to test this hypothesis would be very useful.

One general lesson that can be drawn from the previous analysis of the
task of generating referring expressions is that the Gricean maxims should
not be interpreted too literally (as is done, e.g., in the Full Brevity Interpre-
tation); no doubt Grice himself would have been the first to say this.

4. THE ALGORITHM

Based on the above considerations, we have developed a new algorithm for
generating referring expressions. This algorithm is simpler and faster than
the algorithms proposed in Dale (1989) and Reiter (1990a) because it per-
forms much less length-oriented optimization of its output; we now believe
that the level of optimization suggested in Dale (1989) and Reiter (1990a)
was unnecessary and psycholinguistically implausible. The algorithm described
here has been implemented as part of a larger natural language generation
system called IDAS (Reiter, Mellish, & Levine, 1992).

254 DALE AND REITER

4.1 Assumptions About the Knowledge Base
One of our main concerns is the development of algorithms which are
genuinely portable from one application to another and from one domain
to another. With this goal in mind, our algorithm is intended to be reason-
ably domain-dependent. We do, however, make some assumptions about
the structure of the host system’s underlying knowledge base and require
that certain interface functions be provided.

In particular, we assume the following:

l Every entity is characterized in terms of a collection of attributes and
their values. As noted earlier, an attribute-value pair is what is some-
times thought of as a property; an example is <coiour, red> .

l Every entity has as one of its attributes some type. This is a special attri-
bute that corresponds to the kinds of properties that are typically realized
by head nouns; an example is <type, dog> .

l The knowledge base may organize some attribute values in a subsumption
taxonomy, for example, as is done in KL-ONE (Brachman & Schmolze,
1985) and related KR systems). Such a taxonomy might record, for ex-
ample, that animal subsumes dog, and that red subsumes scarlet.
Although in many systems only what we call the type attribute would
have its possible values arranged as a taxonomy, for generality, our
algorithm permits a taxonomy of values for any attribute.

We require that the following interface functions be provided:

MoreSpecificValue(object, attribute, value) returns a new value for attribute
where that value is more specific than value (i.e., it is a child of value in the
taxonomy of values for attribute) and subsumes the most specific value of
attribute known for object from the system’s point of view. If no more specific
value is available, the fu&tion returns nil.

BasicLevelValue(object,attribute) returns the basic-level value of an attribute
of an object, from the point of view of the current user. For example, Basic
LevelValue(~arfiel~, type) might be cat. The knowledge representation sys-
tem should in principle allow different basic-level classes to be specified for
different users (Reiter, 1991; Rosch, 1978).

UserKnows(object, attribute-value-pair) returns true if the user knows or can
easily determine (e.g., by direct visual perception) that the attribute-value pair
applies to the object; false if the user knows or can easily determine that the
att~bute-value pair does not apply to the object; and unknown otherwise. For
example, if object x had the property <type, Chihuahua> , and the user was
capable of distinguishing dogs from cats, then UserKnows(x, <type, dog>)
would be true, while UserKnows(x, <type, cat>) would be false. If the user
was not, however, capable of distinguishing different breeds of dogs and had
no prior knowledge of x’s breed, then UserKnows(x, <type, Chihuahua>)
and UserKnows(x, <type, poodle>) would both return unknown, since the
user would not know or be able to easily determine whether x was a
Chihuahua, poodle, or some other breed of dog.

GENERATION OF REFERRING EXPRESSIONS

(X / Dog

:determiner definite

:relations ((Y / Colour

:domain X

:range (Z / Black))))

Figure 4. The SPL term corresponding to {(type,dog),(colour,black)}.

[index: x

status:
given: +

[1 unique: +

I.

255

Figure 5. The recoverable semantic structure corresponding to {(type,dog),(colour,black)}.

Finally, we assume that the global variable PreferredAttributes contains
the attributes that human speakers and hearers prefer (e.g., type, size,
shape, and colour in the assembly task transcript mentioned in Section
3.2.2; and type, colour, and label in the machinery domain of Section 4.5).
These attributes should be listed in order of preference, with the most pre-
ferred attribute first. The elements of this list and their order will vary with
the domain and will typically be determined by empirical investigation. It is
this element that provides the real interface to domain portability.

4.2 Inputs and Outputs
In order to construct a reference to a particular entity, the host system
must provide

. a symbol corresponding to the intended referent; and

. a list of symbols corresponding to the members of the contrast set (i.e.,
the other entities in focus, besides the intended referent).

The algorithm returns a list of attribute-value pairs that correspond to the
semantic content of the referring expression to be realised. This list can then
be converted into an SPL term (Kasper, 1989), as is done in the IDAS imple-
mentation; it can also be converted into a recoverable semantic structure of
the kind used in Dale’s EPICURE system (Dale, 1989, 1992). For example,
the distinguishing description corresponding to the attribute-value list
{ <type,dog> , <colour,black> } would be converted into the SPL term
shown in Figure 4 and the recoverable semantic structure shown in Figure 5.

256 DALE AND REITER

4.3 The Algorithm
In general terms, the algorithm iterates through the attributes in Preferred
Attributes. For each attribute, it checks if specifying a value for that attribute
would rule out at least one member of the contrast set that has not already
been ruled out; if so, this attribute is added to the set of attributes to be used
in the referring expression, with a value that is known to the user, rules out
as many contrast set members as possible, and, subject to these constraints,
is as close as possible to the basic-level value. The process of adding attribute-
value pairs continues until a referring expression has been formed that rules
out every member of the contrast set. There is no backtracking; once an
attribute-value pair has been added to the referring expression, it is not
removed even if the addition of subsequent attribute-value pairs makes it
unnecessary. A head noun (i.e., a value for the type attribute) is always
included, even if it has no discriminatory power (in which case the basic-level
value is used); other attribute values are only included if, at the time they
were under consideration, they ruled out some distracters that had not been
ruled out by previously considered attributes.

More precisely, the algorithm is as shown in Figure 6. Here, r is the in-
tended referent, C is the contrast set, P is the list of preferred attributes, and
L is the list of attribute-value pairs returned.14

MakeReferringExpression is the top-level function. This returns a list of
attribute-value pairs which specify a referring expression for the intended
referent. The attributes are tried in the order specified in the PreferredAttributes
list, and a value for type is always included, even if type has no discrimin-

atory power.

FindBestValue takes an attribute and an initial value; it returns a value for
that attribute that is subsumed by the initial value, accurately describes the in-
dended referent (i.e., subsumes the value the intended referent possesses for
the attribute), rules out as many distracters as possible, and, subject to these
constraints, is as close as possible in the taxonomy to the initial value. It does
this by considering successively more specific values for the attribute, stopping
when the most specific value known to the user is reached, and choosing as the
best value that value which rules out most elements of the contrast set. When
two values of different specificity rule out the same number of elements, the
least specific value is chosen. If a value that the user knows to be true cannot
be found, the function returns no-value.

RulesOut takes an attribute-value pair and returns the elements of the set of
remaining distracters that are ruled out by this attribute-value pair.

I4 For simplicity of exposition, the algorithm as described here returns failure if it is not
possible to rule out all the members of the contrast set. A more robust algorithm might attempt
to pursue other strategies here, for example, generating a referring expression of the form one
ofthe Xs (see Dale, 1992), or modifying the contrast set by adding navigation information (see
Section 5.1.1).

MakeReferringExpression(r, C, P)

L + 0
for each member Ai of list P do

V = FindBestValue(r, Ai, BasicLevelValue(r, Ai))

if RulesOut((Ai, V)) # nil

thenL+LU{(Ai,V)}
C t C - RulesOut((Ai, V))

endif
ifC= {} then

if (type, X) E L for some X
then return L

else return L U {(type, BasicLevelValue(r, type))}

endif
endif

return failure

FindBestValue(r, A, initial-due)

if UserKnows(r, (A, initial-value)) = true

then value t initial-value

else value i- no-value

endif
if (more-specific-vu/w t MoreSpecificValue(r, A, value)) # nil A

(new-value t FindBestValue(A, more-specific-value)) # nil A

(IRulesOut((A, new-vulue))(> jRulesOut((A, vulue))~)
then value t new-value

endif

return vulue

jRulesOut((A.1

if V = no-value

then return nil

else return {x : x E C A UserKnows(z, (A, V)) = false}

endif

Figure 6. The Algorithm.

257

258 DALE AND REITER

4.4 An Example
To see how this algorithm works, we will consider an example in detail.
Suppose the task is to create a referring expression for Object1 in a context
that also includes Object2 and Object3, where these objects are known by
the system to have the following properties.15

l Object1 : <type, Chihuahua>, <size, small > , < colour, black>
l Object2: <type, Chihuahua>, <size, large>, <colour, white>
l Object3: <type, Siamese-cat > , <size, small > , < colour, black >

In other words, r = Object1 and C = (Object2, Object3). Assume that
P = {type, colour, size,. . . }.

When MakeReferringExpression is called in this context, it initializes L
to the empty set. FindBestValue is then called with A = type, and initiaf-
value set to the basic-level type of Object1 , which, let us assume, is dog.

Assume UserKnows(Object1, <type, dog>) is true, that is, the user
knows or can easily perceive that Object1 is a dog. FindBestValue then sets
value to dog and examines the more specific values for type for the intended
referent to see if any of them rule out more distracters than dog does. In
this case, the only appropriate descendent of dog is Chihuahua, but <type,
Chihuahua> does not have more discriminatory power than <type, dog >
(both rule out {Object3)), so FindBestValue returns dog as the best value
for the type attribute. MakeReferringExpression then verifies that (type,
dog) rules out at least one distractor and therefore adds this attribute-value
pair to L, while removing RulesOut(<type, dog>) = { Object3) from C.

This means that the only remaining distractor in C is Object2. Make
ReferringExpression (after checking that C is not empty) calls FindBestValue
again with A = colour (the second member of P). FindBestValue returns
Object1 ‘s basic-level colour value, which is black, because no more specific
colour term has more discriminatory power. MakeReferringExpression then
adds ccolour, black> to L and removes RulesOut(<colour, black>) =
{ Object2) from C. C is then empty, so the generation task is completed, and
MakeReferringExpression returns { <type, dog> , <colour, black> >,
that is, a specification for the referring expression the black dog. Note that if
P had been (type, size, colour,. . . } instead of {type, colour, size,. . . },
MakeReferringExpression would have returned { <type, dog> , <size,
small> } instead; that is, the semantic content of the referring expression the
small dog. ’ 6

I5 This example is the same as the example of Section 2.2, except that the nonbasic-level

types Chihuahua and Siamese-cat have been used instead of the basic-level terms dog and cat.
I6 Note that this same semantic content could be realised as the dog which is small. Again,

we do not address here the issue of what constraints are brought to bear in the mapping from

semantic content to linguistic form and assume for the moment that both realisations are

equivalent.

GENERATION OF REFERRING EXPRESSIONS 259

4.5 Implementation
The algorithm is currently being used within the IDAS system (Reiter et al.,
1992). IDAS is a natural language generation system that generates on-line
documentation and help texts from a domain knowledge base and models
of the user’s task, the user’s expertise level, and the discourse context. IDAS
uses a KL-ONE-like knowledge representation system, with roles corre-
sponding to attributes and fillers to values. The type attribute is implicit in
the position of an object in the taxonomy and is not explicitly represented.
The MoreSpecificValue function is defined in terms of standard knowledge
base access functions.

A knowledge-base author can specify explicit basic-level attribute values
in IDAS user models, but IDAS is also capable of using heuristics to guess
which value is basic level. The heuristics are fairly simple (e.g., “use the
most general value that is not in the upper-model (Bateman, Kasper, Moore,
& Whitney, 1990) and has a one-word realisation”), but they seem to be
fairly effective, at least in IDAS’s current domain (complex electronic
machinery). A PreferredAttributes list has been created for this domain by
visual inspection of the equipment being documented; its first members are
type, colour, and label.” The UserKnows function simply returns true if
the attribute-value pair is accurate and false otherwise; this essentially
assumes that the user can visually perceive the value of any attribute in
PreferredAttributes, which may not be true in general.

The algorithm performs quite effectively in IDAS. In particular, the
algorithm has proven to be useful due to the following:

1. It is fast. The algorithm’s run time is linear in the number of distracters
and independent of the number of potential attributes (see Section 3.1).

2. It allows human preferences and capabilities to be taken into considera-
tion. The PreferredAttributes list, the preference for basic-level values,
and the UserKnows function are all ways of biasing the algorithm
towards generating referring expressions that use attributes and values
that human hearers, with all their perceptual limitations, find easy to
process, thus satisfying the principle of sensitivity (see Section 2.3).

Almost all referring expressions generated by IDAS contain a head noun
and zero, one, or perhaps at most two modifiers; longer referring expressions
are rare. The most important task of the algorithm is therefore to quickly
generate easy-to-understand referring expressions in such simple cases;
optimal handling of more complex referring expressions is less important,
although the algorithm should be robust enough to generate something
plausible if a longer referring expression is needed.

I7 Label is the textual label that some switches, indicators, etc., have; for example, <label,
Power> means that the entity in question has a Power label attached to it.

260 DALE AND REITER

5. CONCLUSIONS AND FUTURE WORK

We have presented four possible interpretations of the Gricean maxim of
Brevity for the referring expression generation task, and we have argued
that the simplest and fastest one may be the best to use, because it seems to
be closest to what human speakers do. Based on our chosen interpretation,
we have created an algorithm for the generation of referring expressions
which is substantially simpler and faster than the algorithms we have pro-
posed in previous work (Dale, 1989; Reiter, 1990a). The algorithm has been
defined in terms of well-specified interface functions and hence should be
portable to most domains.

There are two general areas we are particularly interested in pursuing in
future work: generating more complex referring expressions, and investigat-
ing different computational interpretations of the Gricean maxims in other
natural language generation tasks.

5.1 More Complex Referring Expressions

5.1.1 Navigation
At the beginning of this article, we stated that the purpose of the algorithm
presented here is to distinguish an intended referent from all other entities
that are in the context set, where this is taken to be the set of entities which
are in the current focus of attention. An important question we need to
address is what action should be taken if the intended referent is not in the
current focus of attention.

Unfortunately, there is very little psycholinguistic data available on
which to base a model of the generation of such referring expressions. How-
ever, we think it is useful to take the view that, in the general case, a refer-
ring expression contains two kinds of information: navigation and discrim-
ination. Each descriptor used in a referring expression plays one of these
two roles.

l Navigational, or attention-directing information, is intended to bring
the intended referent into the hearer’s focus of attention.

l Discrimination information is intended to distinguish the intended
referent from other objects in the hearer’s focus of attention; such in-
formation has been the subject of this article.

Navigational information is not needed if the intended referent is already in
the focus of attention. If it is needed, it typically takes the form, at least for
physical objects, of locational information.‘8 The IDAS system, for example,

I8 Note that we are not implying here that objects which are outside of the focus of attention

are necessarily outside of the hearer’s field of vision: An object may be in the hearer’s field of

vision and still not in her or his focus of attention and can be outside of the hearer’s field of
vision but still in her or his focus of attention.

GENERATION OF REFERRING EXPRESSIONS 261

can generate referring expressions such as the black power supply in the
equipment rack. In this case, in the equipment rack is navigation information
that is intended to bring the equipment rack and its components into the
hearer’s focus of attention, whereas black power supply is discrimination
information that is intended to distinguish the intended referent from other
members of the context set (for example, the white power supply that is also
present in the equipment rack). Appelt’s (1985a, 1985b) KAMP system was
also capable of generating referring expressions that, in our terminology,
included navigational information. For example, KAMP could generate the
utterance Remove the pump with the wrench in the tool-box, where the
wrench in the tool-box is a referring expression that uses in the tool-box as
navigational information to tell the hearer where the tool can be found, and
wrench as discrimination information that informs the hearer which tool
from the tool-box should be used.

The navigation model currently implemented in IDAS is simplistic and
not theoretically well justified, and we believe that it would be difficult to
implement the KAMP model in a computationally efficient manner. We
hope to do further research on building a theoretically sound and computa-
tionally efficient model of navigation.

5.1.2 Relative Attribute Values
We suggested earlier that, at least in contexts where the intended referent is
physically co-present for both speaker and hearer, the speaker will often
prefer to use relative instead of absolute attribute values: for example, small
instead of one inch. We make no claims here as to how people encode the
properties of objects in such situations, although clearly in some situations
the encoding must be in relative terms: We can tell the relative heights of
two neighboring mountains without having any idea as to their absolute
heights. Similarly, in computational systems, knowledge bases sometimes
explicitly encode relative attribute values (e.g., <size, small >), but this can
cause difficulties when referring expressions need to be generated in different
contexts; a one-inch screw, for example, might be considered to be small in
a context where the other screws were all two-inch screws, but large in a
context where the other screws were all half-inch screws.

From the point of view of constructing broad coverage, portable com-
putational systems, a better solution is for the knowledge base to record
absolute attribute values where they are available, and then for the genera-
tion algorithm to automatically convert absolute values to relative values,
depending on the values that other members of the context set possess for
this attribute.19 Thus, the knowledge base might record that a particular

” Of course, if the generation system is a component in a larger intelligent system that also

incorporates a vision component, it is quite possible that the system may find itself in situations

where it is only able to construct representations that contain relative values for attributes.

262 DAlE AND REITER

screw had (size, one-inch), and the generation system would choose to call
this screw srnafi or large depending on the size of the other screws in the
context set. We hope to do further research on determining how exactly this
process should work.

5.2 Computational Interpretations
of the Maxims in Other NLG Tasks

The principle that has emerged from our study of the referring expression
generation task is that a simple and nonliteral interpretation of the Gricean
maxims is to be preferred: It is faster in computational terms and seems to
be closer to what human speakers do when they construct referring expres-
sions. We are very interested in performing similar studies of other genera-
tion tasks, to determine if the same principle applies in these tasks as well.
Perhaps it may some day be possible to make a very general statement such
as “human speakers in general use very simple (in computationai terms)
interpretations of the maxims of conversational implicature, and hence
computer natural language generation systems should also use such inter-
pretations”; we do not as yet have sufficient evidence to support such a
sweeping claim; but we intuitively believe that there is some truth to it and
hope to be able to provide more evidence to support this in future work.

REFERENCES

Appelt, D. (198Sa). Planning English sentences. New York: Cambridge University Press.
Appelt, D. (1985b). Planning English referring expressions. ArtificiaI IntetIigenee, 26, l-33.
Appelt, D. (1985~). Some pragmatic issues in the planning of definite and indefinite referring

expressions. Proceedings of the 23rd Annual Meeting of the Association far Computa-
tional Linguistics (pp. 198-203). Published by the Association for Computational
Linguistics.

Appelt, D. & Kronfeld, A. (1987). A computational model of referring. Proceedings of IJCAI-
I987 (Vol. 2, pp. 640-647). Los Altos, CA: Morgan Kaufmann.

Bateman, J., Kasper. R., Moore, J., &Whitney, R. (1990). A generalorganization of knowledge
for naturul Ianguage processing: The Penman upper model. (Tech. Rep.). Marina de1
Rey, CA: Information Sciences Institute.

Brachman, R., & Schmolze, J. (1985). An overview of the KL-ONE knowledge representation
system. Cognitive Science, 9, 111-216.

Cruse, D. (1977). The pragmatics of lexical specificity. Journal of Linguistics, 13, 153-164.
Dale, R. (1989). Cooking up referring expressions. Proceedings of the 27th Annual Meeting of

the Association for Computational Linguistics (pp. 68-75). University of British
Columbia, Vancouver, BC, Canada.

Dale, R. (1992). Generating referring expressions: Building descriptions in a domain of objects
and processes. Cambridge: MIT Press.

Dale, R., & Haddock, N. (1991). Content determination in the generation of referring expres-
sions. Computational Intelligence, 7(4), 156-118.

Donnellan, K. (1966). Reference and definite description. Philosophical Review, 75, 281-304.
Ford, W., & Olson, D. (1975). The elaboration of the noun phrase in children’s description of

objects. Journal of Exper~mentu~ Chiid Psychofogy, 19, 371-382.

GENERATION OF REFERRING EXPRESSIONS 263

Garey, W., & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-
completeness. San Francisco: W.H. Freeman.

Goodman, B. (1986). Reference identification and reference identification failure. Computa-
tional Linguistics, 12, 273-305.

&ice, H.P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax and
Semantics: Vol3, speech acts (pp. 43-58). New York: Academic.

Grosz, B., & Sidner, C. (1986). Attention, intention, and the structure of discourse. Computa-
tional Linguistics, 12, 175-206.

Johnson, D. (1974). Approximation algorithms for combinatorial problems. Journalof Com-
puter and Systems Sciences, 9.

Kasper, R. (1989). A flexible interface for linking applications to Penman’s sentence generator.

Proceedings of the I989 DARPA Speech and Natural Language Workshop (pp. 153-158).

Philadelphia, Los Altos, CA: Morgan Kaufmann.

Kronfeld, A. (1986). Donnellan’s distinction and a computational model of reference. In Pro-
ceedings of the 24th Annual Meeting of the Association for Computational Linguistics
(pp. 186-191). Published by the Association for Computational Linguistics.

Levelt, W. (1989). Speaking: From intention to articulation. Cambridge: MIT Press.

McDonald, D. (1981). Natural language generation as a process of decision-making under con-
straints. Unpublished doctoral dissertation, MIT, Cambridge.

McDonald, D. (1983). Description directed control. Compufers and Mathematics, 9, 11 l-130.

Oberlander, J., & Dale, R. (1991, August). Generating expressions referring to eventualities.

Proceedings of the 13th Annual Conference of the Cognitive Science Society (pp. 67-72).

University of Chicago, Hillsdale, NJ: Erlbaum.

Pechmann, T. (1989). Incremental speech production and referential overspecification. Linguis-
tics, 27, 89-110.

Reiter, E. (1990a). The computational complexity of avoiding conversational implicatures. Pro-
ceedings of the 28th Annual Meeting of the Association for Computational Linguistics
(pp. 97-104).

Reiter, E. (1990b). Generating descriptions that exploit a user’s domain knowledge. In R. Dale,

C. Mellish, & M. Zock (Eds.), Current research in natural language generation (pp.

257-285). London: Academic.

Reiter, E. (1991). A new model of lexical choice for nouns. Computational Intelligence, 7(4),
240-251.

Reiter, E., Mellish, C., & Levine, J. (1992). Automatic generation of on-line documentation in

the IDAS project. Proceedings of the Third Conference on Applied Natural Language
Processing (pp. 64-71). Trento, Italy. Published by the Association for Computational
Linguistics.

Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and
categorization (pp. 27-48). Hillsdale, NJ: Erlbaum.

Sonnenschein, S. (1985). The development of referential communication skills: Some situations

in which speakers give redundant messages. Journal of Psycholinguistic Research, 14,
489-508.

Whitehurst, G. (1976). The development of communication: Changes with age and modeling.
Child Development, 47, 473-482.

