
Hybrid Logic Dependency
Semantics

Lecture 2

January 22, 2013

What goes into the OpenCCG

surface realiser?

Brief recap - What is NLG?

How computer programs can be
made to produce (high-quality)
natural language text from

•  computer-internal

representations of information

•  other texts

Brief recap - the NLG pipeline

The first part of this
course is concerned with
the bottom part of the
pipeline:

surface realisation

Using the (state-of-the-art)
OpenCCG surface
realiser

Document Plans

Document Planning

Sentence Plans

 Microplanning

Surface Realisation

Surface Text

Communicative Goal(s)

Surface realisation with OpenCCG

Today's lecture:

What do OpenCCG
sentence plans look like?

i.e. What are �hybrid logic
dependency structures�?

An OpenCCG sentence plan

XML:
<satop nomvar="X">
 <prop name="restaurant"/>
</satop>

<satop nomvar="X">
 <diamond mode="theme">
 <nomvar name="W"/>
 </diamond>
</satop>

Hybrid logic:
@x restaurant ^ @x <THEME> w ^ @y inexpensive ^ !
@y <THEME> w ^ @z attractive ^ @z <THEME> w ^ !
@w Giovanni's!

English:

�Giovanni's is an attractive
inexpensive restaurant.�

Directed graphs

OpenCCG input representations
are fundamentally directed
graphs:

•  nodes - "points"
•  edges - "arrows" connecting

two points

If there is an edge from node X to node Y, there is a
dependency between entities X and Y
•  i.e., Y is a dependent of X

Directed graphs - topological
constraints?

OpenCCG directed graphs can be either trees or non-trees.

�Re-entrancy� and �multi-rootedness� are permitted

Directed graphs - topological
constraints?

OpenCCG directed graphs can even be non-
connected or cyclic

Labelled directed graphs

OpenCCG input representations are
labelled directed graphs:

•  node labels - different types of

entity
•  edge labels - different types of

relation/dependency

Surface realisation with OpenCCG

Sentence plan:

•  a labelled directed graph

•  can be deep or surface

or anything in between

Surface sentence plans

Basically a syntactic dependency structure.

Possible realisations are highly constrained:
•  Giovanni's is an attractive inexpensive restaurant.
•  Giovanni's is an inexpensive attractive restaurant.

Deep sentence plans

Many possible realisations:

•  Giovanni's is an attractive inexpensive restaurant.
•  Giovanni's is both inexpensive and attractive.
•  Giovanni's does cheap food and has attractive decor.
•  At Giovanni's, the food offers good value. Moreover, the

decor is attractive.

Intermediate sentence plans

More realisations than surface, but fewer than deep:
•  Giovanni's is an attractive inexpensive restaurant.
•  Giovanni's is a restaurant that is cheap and attractive.
•  Giovanni's, an attractive restaurant, serves inexpensive food.

Surface realisation with OpenCCG
Sentence plan:

•  a labelled directed graph

How can we represent labelled directed graphs?
i.e., we need a graph description language (a logic)

Graphs and logic
Think about first order logic.

Formulas:
•  �x �y. x≠y ^ boy(x) ^ girl(y) ^ love(x,y) ^ ~love(y,x)

Every formula describes a set of models:
•  the set of models in which the formula is true

Models are graphs!

Node labels are unary predicates (properties).
Edge labels are binary predicates (relations).

boy girl
LOVE

Graphs and logic

Want to encode labelled directed graphs in a linear
format

i.e., convert graph into a logic formula that describes just
that graph

But which logical system shall we use to encode labelled

directed graphs?
–  first-order logic is way more expressive than we

need
–  modal logic is perfectly suited to describe graphs

(Kripke structures) - hence used in OpenCCG

Describing directed graphs - modal
propositional logic

Giovanni's ^ (<> inexpensive) ^ (<> attractive)!

The <> modal operator is used to signal a link between
two nodes (i.e. a relation/dependency between two
entities)

Another example

be ^ (<> Giovanni's) ^ (<> (restaurant ^ (<> a) ^ !
(<> attractive) ^ (<> inexpensive)))!

 be !
^ <> Giovanni's !
^ <> restaurant !
 ^ <> a !
 ^ <> attractive !
 ^ <> inexpensive!

Using indentation instead of
parentheses to show the
relation between the graph
and the formula more clearly

Describing labelled directed graphs -
multimodal propositional logic
Instead of just one modal operator <>, there is a range of
different multimodal operators, e.g., <PRICE>, <DECOR>!
•  denote different types of relation/dependency between two

entities

Giovanni's ^ (<PRICE> inexpensive) ^ (<DECOR>
attractive)!

Another example

be ^ (<SBJ> Giovanni's) ^ (<PRED> (restaurant ^ (<DET> a)
!^ (<MOD> attractive) ^ (<MOD> inexpensive)))

 be !
^ <SBJ> Giovanni's !
^ <PRED> restaurant !
 ^ <DET> a !
 ^ <MOD> attractive !
 ^ <MOD> inexpensive!

Using indentation:

Graphs that are not trees?

restaurant ^ <THEME> Giovanni's!
inexpensive ^ <THEME> Giovanni's!
attractive ^ <THEME> Giovanni's!

But: normal modal logic has no way of ensuring that it is the same
entity which is the THEME in all three cases.

Also, no way of combining the three fragments into a single formula -
conjunction won't do.

Hybrid multimodal logic - nominals

restaurant ^ <THEME> (w ^ Giovanni's)!
inexpensive ^ <THEME> w!
attractive ^ <THEME> w!

Nominals capture reentrancy, but not multi-rootedness.

Hybrid multimodal logic - @ operator

(@x restaurant ^ <THEME> (w ^ Giovanni's))^!
(@y inexpensive ^ <THEME> w)^!
(@z attractive ^ <THEME> w)!

@x restaurant!
!
@y <THEME> Giovanni's!

Elementary predications
Every hybrid logic formula can be turned into an equivalent
conjunction of elementary predications (EP)

Two kinds of EP:

1. Node label statements:
•  @x restaurant!
•  node x is labelled �restaurant�

2. Edge statements:
•  @x <THEME> y !
•  there is an edge labelled �theme� from node x to

node y

Elementary predications

 (@x restaurant ^ <THEME> (w ^ Giovanni's))!
^ (@y inexpensive ^ <THEME> w)!
^ (@z attractive ^ <THEME> w)!

Hybrid logic formula:

Elementary predications

@x restaurant ^ @y inexpensive ^ @z attractive
^ @w Giovanni's ^ @x <THEME> w ^ @y <THEME> w
^ @z <THEME> w!

Conjunction of EPs:

Another example

be ^ (<SBJ> Giovanni's) ^ (<PRED> (restaurant ^
(<DET> a) ^ (<MOD> attractive) ^ (<MOD>
inexpensive)))!

Another example

@x be ^ @y Giovanni's ^ @z restaurant ^ @w a ^ !
@u attractive ^ @v inexpensive ^ @x <SBJ> y ^
@x <PRED> z ^ @z <DET> w ^ @z <MOD> u ^ !
@z <MOD> v!

Elementary predications in XML

Node label statements: @x attractive
<satop nomvar="X">!
 <prop name="attractive"/>!
</satop>

Edge statements: @x <THEME> y!
<satop nomvar="X">!
 <diamond mode="theme"> !
 <nomvar name="Y"/>!
 </diamond>!
</satop>!

What you need to know

How to convert a labelled directed graph into a set of
elementary predications of hybrid multimodal logic

How to convert a set of elementary predications of hybrid
multimodal logic into a labelled directed graph

•  Reading for Week 2:

–  Michael White. Efficient Realization of Coordinate Structures in
Combinatory Categorial Grammar. Research on Language and
Computation, 4(1):39–75, 2006.

Learn more about hybrid logic

Patrick Blackburn (2000): "Representation, Reasoning
and Relational Structures: a Hybrid Logic Manifesto".
Logic Journal of the IGPL, 8(3), 339-365.
URL: http://www.loria.fr/~blackbur/papers/manifesto.pdf

Patrick Blackburn (1993): "Modal Logic and Attribute
Value Structures". In Diamonds and Defaults, edited by
M. de Rijke, Kluwer Academic Publishers, 1993, pages
19-65.
URL: http://www.loria.fr/~blackbur/papers/attribute.pdf

