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Boltzmann Machines

Dayan and Abbott §7.6
I Energy function of 0/1 units

E(u) = −h · u− 1
2

uT Mu

note: M can be taken as symmetric
I Boltzmann distribution

P(u) =
1
Z

exp−E(u), where Z =
∑

u

exp−E(u)
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I Glauber dynamics/Gibbs sampling

p(ua(t + 1) = 1|u(t)) = 1
1 + exp(−Ia(t))

where

Ia(t) = ha +
Nu∑

b=1

Mabub(t)

I Asynchronous updates define a Markov chain whose
equilibrium distribution is the Boltzmann distribution
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Learning Rule

I Log likelihood L(M) = 〈log p(u|M)〉p(u)

∂L
∂Mab

= 〈uaub〉p(u) −
∑

u

p(u|M)uaub

def
= 〈uaub〉+ − 〈uaub〉−

I Learning stops when statistics are the same in clamped
(+) and unclamped (−) phases (aka wake and sleep
phases)

I Note Hebbian and anti-Hebbian terms
I Generally the expectation in the negative phase is

intractable and is approximated by sampling
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Boltzmann Machines with Hidden Units

see Dayan and Abbott §8.4 pp 322-326
I Hidden units denoted by v
I Energy Function

E(u,v) = −vT Wu− 1
2

vT Mv

P(u|W ,M) =
1
Z

∑
v

exp−E(u,v)

I Learning rule (Ackley, Hinton and Sejnowski, 1985)

∂ log p(un|W ,M)

∂Wab
=
∑

v

p(v|un,W ,M)vaun
b −

∑
u,v

p(v,u|W ,M)vaub

= 〈vaun
b〉+ − 〈vaub〉−
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Restricted Boltzmann Machines and Deep Learning

I If M = 0 then p(v|u) =
∏

a p(va|u) (show this)
I This architecture is known as a restricted Boltzmann

Machine (RBM)
I RBMs can be stacked to carry out “deep learning”; after

learning one hidden layer, the activity vectors of the hidden
units, when they are being driven by the real data, can be
treated as "data" for training another RBM (Hinton et. al.,
2006). This is called a “deep belief network” (DBN)
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Sparse deep belief net model for visual area V2

Lee, Ekanadham and Ng (2008)

I Consider an RBM with Gaussian visible units

E(u,v) =
1

2σ2

∑
i

u2
i −

1
σ2

∑
i

ciui +
∑

j

bjvj +
∑
i,j

uivjwij


I p(ui |v) ∼ N(ci +

∑
j wijvj , σ

2)

I Also impose a sparsity prior on the hidden units, with
target sparseness p

∑
j

||p − 1
m

m∑
k=1

E[v (k)
j |u

(k)]||2

I Layer 2 trained after layer 1 has learned (DBN)
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First layer filters

Second layer: each unit “looks at” a small number of first layer
units, e.g.

The leftmost patch in each group is a visualization of the model V2 basis, obtained by taking a weighted linear

combination of the first layer bases to which it is connected.

Figure credits: Lee, Ekanadham and Ng (2008)

Properties of “V2” units can be compared to neural data
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Energy Models for Natural Scenes

Osindero, Welling and Hinton (2005)
I Energy function

E(u) =
M∑

i=1

αi log

(
1 +

1
2
(Wiu)2

)
Note: u is real-valued. Wi is i th row of W

I Product of Student-t distributions (PoT)

p(u) =
1
Z

M∏
i=1

1
(1 + 1

2(Wiu)2)αi

a specific example of the Product of Experts formalism
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I If M = Nu then this model is equivalent to noiseless ICA
with Student-t priors on the hidden units

I For the overcomplete case M > Nu this model differs from
the sparse coding approach.

I This model is discused in HHH §13.1.5-6
I As a t distribution can be represented as a GSM, we can

set up the PoT models as a two-layer network; this gives
one approach to learning W . In this case the energy
function for the hidden variables corresponds to a Gamma
distribution

I Roth and Black (2005) generalized the PoT model from
image patches to whole images as a “field of experts”
(convolutional architecture)
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Learned filters shown in raw data space

complete 1.7× overcomplete

[Osindero, Welling and Hinton, 2005]
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Hierarchical PoT models

E(u) =
M∑

i=1

αi log

1 +
1
2

K∑
j=1

Cij(Wi u)2


I C has non-negative weights
I As in subspace ICA and topographic ICA the C weights

model the dependencies between the v units (where
v = Wu)

I Can obtain results similar to subspace ICA and
topographic ICA
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Discussion of Undirected Models

I Undirected models can also give rise to simple-cell like
receptive fields (note they are receptive rather than
projective fields)

I Lee et al (2008) demonstrate how a second layer can learn
combinations of “simple cell” type units

I HPoT can give rise to layouts of retinotopy, phase, spatial
frequency and orientation similar to cortical maps
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Directed and Undirected Models

Zhu, Shi and Si, 2009

I Undirected: impose constraints
I Directed: model directions of variation
I Hybrid: combination of the above
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Summary of Higher-Order Statistical Models

I Sparse coding and ICA models give rise to Gabor patches,
as do energy models, and slow feature analysis (Berkes
and Wiskott, 2005)

I Extensions can give rise to subspaces (modelling complex
cells) and topographic organization of units. See also
spatio-temporal bubbles (Hyvärinen et al, 2003)

I Convolutional architecture can deal with translation
invariance (in space and/or time)

I Comparison of models ...
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Recall the discussion from Dayan and Abbott (2001) p. 382

... structure in images arising from more complex ob-
jects than bars and gratings. It is unlikely that this
higher-order structure can be extracted by a model with
only one set of causes. It is more natural to think
of causes in a hierarchical manner, with causes at a
higher level accounting for structure in the causes at
a lower level. The multiple representations in areas
along the visual pathway suggest such a hierarchical
scheme, but the corresponding models are still in the
rudimentary stages of development.
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