Predicting Retinal Ganglion Cell Receptive Fields

based on material by Chris Williams & Mark van Rossum

Neural Information Processing School of Informatics, University of Edinburgh

February 2018

Book: HHH [Hyvärinen et al., 2009] (free online) *Natural Image Statistics:* A *Probabilistic Approach to Early Computational Vision*, Springer 2009, chapter 1

- Normative vs Descriptive Theories: how *should* the system behave?
- Of course, this makes most sense if evolution has optimized the natural system. Effect of constraints
- "Statistical-ecological" approach

Chapter 10 of Dayan and Abbott (2001) is also useful.

(HHH, p 21)

- Different sets of features are good for different kinds of data.
- The images that our eyes receive have certain statistical properties (regularities).
- **③** The visual system has learned a model of these statistical properties.
- The model of the statistical properties enables (close to) optimal statistical inference.
- The model of the statistical properties is reflected in the measurable properties of the visual system (e.g. receptive fields of the neurons)

Mutual Informaton and Populations of Neurons

$$H(\mathbf{R}) = -\int p(\mathbf{r}) \log_2 p(\mathbf{r}) d\mathbf{r} - N \log_2 \Delta r$$

and

$$H(R_a) = -\int p(r_a)\log_2 p(r_a)d\mathbf{r} - \log_2 \Delta r$$

We have

$$H(\mathbf{R}) \leq \sum_{a} H(R_{a})$$

(proof, consider KL divergence)

Recall that

$$I(\mathbf{R}; \mathbf{S}) = H(\mathbf{R}) - H(\mathbf{R}|\mathbf{S})$$

so if noise entropy $H(\mathbf{R}|\mathbf{S})$ is independent of the transformation $S \to R$, we can maximize mutual information by maximizing $H(\mathbf{R})$ under given constraints

- Maximization of population response entropy is achieved by
 - **1** factorial coding $p(\mathbf{r}) = \prod_{a} p(r_{a})$
 - each response distribution must be optimized wrt the imposed constraints
- If all neurons have the same constraints ⇒ probability equalization. This does not mean that each variable responds identically!
- Exact factorization and probability equalization are difficult to achieve
- A more modest goal is decorrelation (whitening)

$$\langle (\mathbf{r} - \langle \mathbf{r} \rangle) (\mathbf{r} - \langle \mathbf{r} \rangle)^T \rangle = \sigma_r^2 I$$

- First order image statistics $\langle s(x,t) \rangle$
- Second order, correlation $Q(x,x',t,t') = \langle s(x,t)s(x',t') \rangle$
- By Wiener-Kinchin specifying Q is equivalent to specifying $PSD = |\tilde{s}(f)|^2$ (Wiener-Kinchin)
- Gaussian approximation $\Leftrightarrow Q(x, x') \Leftrightarrow PSD$
- Higher order statistics, e.g. $\langle s(x,t)s(x',t')s(x'',t'')\rangle$ will be discussed later

- Want $\langle \mathbf{r}\mathbf{r}^{T} \rangle = \mathbf{I}$
- Subtract mean of **s**. Linear model (!): $\mathbf{r} = W\mathbf{s}$
- One solution for W: PCA. Find the eigenvectors of cov(s) = ⟨ss^T⟩ = Q_{ss} and scale
- Write $Q_{ss} = U \Lambda U^T$ (where $U^T U = I$ and Λ is diagonal). Set $W = \Lambda^{-1/2} U^T$, then $\langle \mathbf{rr}^T \rangle = I$
- \bullet First PC maximizes $\mathrm{var}(\boldsymbol{w}_1\cdot\boldsymbol{s})$ subject to $|\boldsymbol{w}_1|^2=1$
- Subsequent components: subtract previous ones and repeat procedure
- Can also be used for dimensionality reduction by removing modes with lowest eigenvalues.

PCA on Natural Image Patches

Figure: Hyvärinen, Hurri and Hoyer (2009)

If translation invariant covariance matrix, $C_{ij} = f(|i - j|)$: eigenvectors are periodic (proof: e.g. HHH p.125). So PCA = Fourier analysis.

Whitening with PCA

[Hyvärinen et al., 2009] To whiten:1) do PCA projections 2) scale components with inverse variance.

Generative model with PCA

[Hyvärinen et al., 2009] $\mathbf{s} = \sum_{k} \mathbf{w}_{k} r_{k}$ $P(\mathbf{r}) = \prod_{k} P(r_{k}) = \prod_{k} N(0, \sigma_{k}^{2})$ Gaussian mix of principal components

Importance of Fourier Phase Infomation

Figure: Hyvärinen, Hurri and Hoyer (2009)

- Left: sample images.
 Right: a) phase of (a) + amplitude of (b), b) v.v.
 (Method: Fourier transform image, split into magnitude and phase, mix, inverse transform)
- PSD contains no phase information, so second order stats miss important information ... tbc.

Retinal Ganglion Cell Receptive Fields

Continuous-space version of the above calculation.

Spatial part of the calculation only. [Atick and Redlich, 1990], also Dayan and Abbott §4.2 Find filter D(x).

$$r(\mathbf{a}) = \int D(\mathbf{x} - \mathbf{a}) s(\mathbf{x}) d\mathbf{x}$$
 $Q_{rr}(\mathbf{a}, \mathbf{b}) = \int \int D(\mathbf{x} - \mathbf{a}) D(\mathbf{y} - \mathbf{b}) \langle s(\mathbf{x}) s(\mathbf{y})
angle d\mathbf{x} d\mathbf{y}$

For decorrelation we require

$$Q_{rr}(\mathbf{a},\mathbf{b}) = \sigma_r^2 \delta(\mathbf{a},\mathbf{b})$$

Do calculations in the Fourier basis

$$egin{split} ilde{D}(m{\kappa}) &= \int D(m{x}) \exp(im{\kappa}\cdotm{x}) dm{x} \ D(m{x}) &= rac{1}{4\pi^2} \int ilde{D}(m{\kappa}) \exp(-im{\kappa}\cdotm{x}) dm{\kappa} \end{split}$$

to obtain

$$| ilde{D}(m{\kappa})|^2 ilde{Q}_{ss} = \sigma_r^2 \qquad \Rightarrow \qquad | ilde{D}(m{\kappa})| = rac{\sigma_r}{\sqrt{ ilde{Q}_{ss}}}$$

- Whitening filter
- Notice that only $|\tilde{D}(\kappa)|$ is specified. Decorrelation and variance equalization do not fully specify kernel

- For natural scenes $ilde{Q}_{ss}(\kappa) \propto (\kappa_0^2 + |\kappa|^2)^{-1}$ (Field, 1987)
- Filtering in the eye adds extra factor so that

$$ilde{Q}_{ss}(oldsymbol{\kappa}) = rac{\exp(-lpha|\kappa|)}{\kappa_0^2 + |oldsymbol{\kappa}|^2}$$

- Implies that $|\tilde{D}(\kappa)|$ grows exponentially for large $|\kappa|$.
- Whitening filter boosts the high frequency components (that have low power in $\tilde{Q}_{ss})$

Filtering Input Noise

- Total input is s(x) + η(x), where η(x) is noise, reflecting image distortion, photoreceptor noise etc
- Optimal least-squares filter is the Wiener filter with

$$ilde{D}_{\eta}(oldsymbol{\kappa}) = rac{ ilde{Q}_{ss}(oldsymbol{\kappa})}{ ilde{Q}_{ss}(oldsymbol{\kappa}) + ilde{Q}_{\eta\eta}(oldsymbol{\kappa})}$$

Thus

$$egin{aligned} ilde{D}_{s}(\kappa) &= ilde{D}(\kappa) ilde{D}_{\eta}(\kappa) \ &| ilde{D}_{s}(\kappa)| &= rac{\sigma_{r}\sqrt{ ilde{Q}_{ss}(\kappa)}}{ ilde{Q}_{ss}(\kappa) + ilde{Q}_{\eta\eta}(\kappa)} \end{aligned}$$

Spatial frequency, c/deg

[Atick and Redlich, 1992]

Figure: [Dayan and Abbott 2001]

Solid curve, low noise; dashed curve, high noise Choose local, rotationally symmetric solution

- For low noise the kernel has a bandpass character, and the predicted receptive field has a centre-surround structure
- This eliminates one major source of redundancy arising from strong similarity of neighbouring inputs
- For high noise the structure of the optimal filter is low-pass, and the RF loses its surround
- This averages over neighbouring inputs to extract the signal which is obscured by noise
- Result is not simple PCA as we have enforced spatial invariance on the filter
- In the retina, low light levels ≡ high noise. The predicted change matches observations [Van Nes and Bouman, 1967]

Figure 24. Contrast sensitivity function showing a change in shape from low pass at low luminances and bandpass at high luminances. van Ness' data from Lamming D., Contrast Sensitivity. Chapter 5. In: Cronly-Dillon, J., Vision and Visual Dysfunction, Vol 5. London: Macmillan Press, 1991.

Contribution of Spiking to de-correlation

- Spatio-temporal coding (Dong and Atick, 1995; Li, 1996). Power spectrum is $1/f^2$ but non-separable
- Colour opponency: red centre, green surround (and vice versa) [Atick et al., 1993]

Caveats for the Information Maximization Approach

- Information maximization sets limited goals and requires strong assumptions
- Analyzes representational properties but ignores computational goals e.g. object recognition, target tracking
- Cortical processing of visual signals requires analysis beyond information transfer. V1 can have no more information about the visual signal than the LGN, but it has many more neurons
- However, information transfer analysis does help understand mutual selectivities: RFs with preference for high spatial frequencies are low-pass temporal filters, and RFs with selectivity for low spatial frequency act as bandpass temporal filters

References I

Atick, J. J., Li, Z., and Redlich, A. N. (1993).

What does post-adaptation color appearance reveal about cortical color representation? Vision Res, 33(1):123–129.

Atick, J. J. and Redlich, A. N. (1990). Towards a Theory of Early Visual Processing. *Neural Comput*, 2(3):308–320.

Atick, J. J. and Redlich, A. N. (1992). What does the retina know about natural scenes. *Neural Comp.*, 4:196–210.

Hyvärinen, A., Hurri, J., and Hoyer, P. (2009). *Natural Image Statistics*. Spinger.

Pitkow, X. and Meister, M. (2012). Decorrelation and efficient coding by retinal ganglion cells. *Nat Neurosci*, 15(4):628–635.

Van Nes, F. and Bouman, M. (1967). Spatial modulation transfer in the human eye. *J Opt Soc Am*, 57:401–406.