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Normative Modelling of the Visual System

Book: HHH [Hyvärinen et al., 2009] (free online) Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision, Springer 2009,
chapter 1

Normative vs Descriptive Theories: how should the system behave?

Of course, this makes most sense if evolution has optimized the
natural system. Effect of constraints

“Statistical-ecological” approach

Chapter 10 of Dayan and Abbott (2001) is also useful.
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Statistical-ecological approach

(HHH, p 21)

1 Different sets of features are good for different kinds of data.

2 The images that our eyes receive have certain statistical properties
(regularities).

3 The visual system has learned a model of these statistical properties.

4 The model of the statistical properties enables (close to) optimal
statistical inference.

5 The model of the statistical properties is reflected in the measurable
properties of the visual system (e.g. receptive fields of the neurons)
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Slide credit: Matthias Bethge
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Mutual Informaton and Populations of Neurons

H(R) = −
∫

p(r) log2 p(r)dr − N log2 ∆r

and

H(Ra) = −
∫

p(ra) log2 p(ra)dr − log2 ∆r

We have
H(R) ≤

∑

a

H(Ra)

(proof, consider KL divergence)

Recall that
I (R;S) = H(R)− H(R|S)

so if noise entropy H(R|S) is independent of the transformation S → R,
we can maximize mutual information by maximizing H(R) under given
constraints
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Factorial Coding

Maximization of population response entropy is achieved by
1 factorial coding p(r) =

∏
a p(ra)

2 each response distribution must be optimized wrt the imposed
constraints

If all neurons have the same constraints ⇒ probability equalization.
This does not mean that each variable responds identically!

Exact factorization and probability equalization are difficult to achieve

A more modest goal is decorrelation (whitening)

〈(r − 〈r〉)(r − 〈r〉)T 〉 = σ2
r I
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Second order statistics

First order image statistics 〈s(x , t)〉
Second order, correlation Q(x , x ′, t, t ′) = 〈s(x , t)s(x ′, t ′)〉
By Wiener-Kinchin specifying Q is equivalent to specifying
PSD = |s̃(f )|2 (Wiener-Kinchin)

Gaussian approximation ⇔ Q(x , x ′)⇔ PSD

Higher order statistics, e.g. 〈s(x , t)s(x ′, t ′)s(x ′′, t ′′)〉
will be discussed later
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Principal Component Analysis

Want 〈rrT 〉 = I

Subtract mean of s. Linear model (!): r = W s

One solution for W : PCA. Find the eigenvectors of
cov(s) = 〈ssT 〉 = Qss and scale

Write Qss = UΛUT (where UTU = I and Λ is diagonal). Set
W = Λ−1/2UT , then 〈rrT 〉 = I

First PC maximizes var(w1 · s) subject to |w1|2 = 1

Subsequent components: subtract previous ones and repeat procedure

Can also be used for dimensionality reduction by removing modes
with lowest eigenvalues.
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PCA on Natural Image Patches

Figure: Hyvärinen, Hurri and Hoyer (2009)

If translation invariant covariance matrix, Cij = f (|i − j |) : eigenvectors
are periodic (proof: e.g. HHH p.125).
So PCA = Fourier analysis.
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Whitening with PCA

[Hyvärinen et al., 2009]
To whiten:1) do PCA projections 2) scale components with inverse
variance.
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Generative model with PCA

[Hyvärinen et al., 2009]
s =

∑
k wk rk

P(r) =
∏

k P(rk) =
∏

k N(0, σ2
k)

Gaussian mix of principal components
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Importance of Fourier Phase Infomation

Figure: Hyvärinen, Hurri and Hoyer (2009)

Left: sample images.
Right: a) phase of (a) + amplitude of (b), b) v.v.
(Method: Fourier transform image, split into magnitude and phase,
mix, inverse transform)

PSD contains no phase information, so second order stats miss
important information ... tbc.
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Retinal Ganglion Cell Receptive Fields

Continuous-space version of the above calculation.
Spatial part of the calculation only. [Atick and Redlich, 1990], also Dayan
and Abbott §4.2 Find filter D(x).

r(a) =

∫
D(x− a)s(x)dx

Qrr (a,b) =

∫ ∫
D(x− a)D(y − b)〈s(x)s(y)〉dxdy

For decorrelation we require

Qrr (a,b) = σ2
r δ(a,b)

Do calculations in the Fourier basis

D̃(κ) =

∫
D(x) exp(iκ · x)dx

D(x) =
1

4π2

∫
D̃(κ) exp(−iκ · x)dκ
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to obtain
|D̃(κ)|2Q̃ss = σ2

r ⇒ |D̃(κ)| =
σr√
Q̃ss

Whitening filter

Notice that only |D̃(κ)| is specified. Decorrelation and variance
equalization do not fully specify kernel
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For natural scenes Q̃ss(κ) ∝ (κ2
0 + |κ|2)−1 (Field, 1987)

Filtering in the eye adds extra factor so that

Q̃ss(κ) =
exp(−α|κ|)
κ2

0 + |κ|2

Implies that |D̃(κ)| grows exponentially for large |κ|.
Whitening filter boosts the high frequency components (that have low
power in Q̃ss)
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Filtering Input Noise

Total input is s(x) + η(x), where η(x) is noise, reflecting image
distortion, photoreceptor noise etc

Optimal least-squares filter is the Wiener filter with

D̃η(κ) =
Q̃ss(κ)

Q̃ss(κ) + Q̃ηη(κ)

Thus

D̃s(κ) = D̃(κ)D̃η(κ)

|D̃s(κ)| =
σr

√
Q̃ss(κ)

Q̃ss(κ) + Q̃ηη(κ)
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[Atick and Redlich, 1992]
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Figure: [Dayan and Abbott 2001]

Solid curve, low noise; dashed curve, high noise

Choose local, rotationally symmetric solution
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For low noise the kernel has a bandpass character, and the predicted
receptive field has a centre-surround structure

This eliminates one major source of redundancy arising from strong
similarity of neighbouring inputs

For high noise the structure of the optimal filter is low-pass, and the
RF loses its surround

This averages over neighbouring inputs to extract the signal which is
obscured by noise

Result is not simple PCA as we have enforced spatial invariance on
the filter

In the retina, low light levels ≡ high noise. The predicted change
matches observations [Van Nes and Bouman, 1967]

19 / 24 20 / 24



Contribution of Spiking to de-correlation

[Pitkow and Meister, 2012]
Decorrelation from Centre-Surround RF,
but spiking threshold can contribute to decorrelation even more.
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Further Decorrelation Analyses

Spatio-temporal coding (Dong and Atick, 1995; Li, 1996).
Power spectrum is 1/f 2 but non-separable

Colour opponency: red centre, green surround (and vice versa)
[Atick et al., 1993]
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Caveats for the Information Maximization Approach

Information maximization sets limited goals and requires strong
assumptions

Analyzes representational properties but ignores computational goals
e.g. object recognition, target tracking

Cortical processing of visual signals requires analysis beyond
information transfer. V1 can have no more information about the
visual signal than the LGN, but it has many more neurons

However, information transfer analysis does help understand mutual
selectivities: RFs with preference for high spatial frequencies are
low-pass temporal filters, and RFs with selectivity for low spatial
frequency act as bandpass temporal filters
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