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Overview

@ Neurobiology of Vision

@ Computational Object Recognition: What’s the Problem?
@ Fukushima’s Neocognitron

@ HMAX model and recent versions

@ Other approaches
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Neurobiology of Vision

@ WHAT pathway: V1 — V2 — V4 — IT

@ WHERE pathway: V1 — V2 — V3 — MT/V5 — parietal lobe
@ IT (Inferotemporal cortex) has cells that are

e Highly selective to particular objects (e.g. face cells)
o Relatively invariant to size and position of objects, but typically
variable wrt 3D view

@ What and where information must be combined somewhere



Invariances in higher visual cortex

[?]
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Left: partial rotation invariance [?].
Right: clutter reduces translation invariance [?].
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Computational Object Recognition

@ The big problem is creating invariance to scaling, translation,
rotation (both in-plane and out-of-plane), and partial occlusion,
while at the same time being selective.

@ What about a back-propagation network that learns some function
f(ly)?

o Large input dimension, need enormous training set
@ No invariances a priori

@ Objects are not generally presented against a neutral background,

but are embedded in clutter

@ Tasks: object-class recognition, specific object recognition,
localization, segmentation, ...



Some Computational Models

Two extremes:

@ Extract 3D description of the world, and match it to stored 3D
structural models (e.g. human as generalized cylinders)

@ Large collection of 2D views (templates)
Some other methods

@ 2D structural description (parts and spatial relationships)

@ Match image features to model features, or do pose-space
clustering (Hough transforms))

o What are good types of features?
@ Feedforward neural network

@ Bag-of-features (no spatial structure; but what about the “binding
problem”?)

@ Scanning window methods to deal with translation/scale



Fukushima’s Neocognitron

[?, 2]

@ To implement location invariance, “clone” (or replicate) a detector
over a region of space, and then pool the responses of the cloned
units

@ This strategy can then be repeated at higher levels, giving rise to
greater invariance

@ See also [?], convolutional neural networks



HMAX model
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HMAX model

@ S1 detectors based on Gabor filters at various scales, rotations
and positions

@ S-cells (simple cells) convolve with local filters

@ C-cells (complex cells) pool S-responses with maximum

@ No learning between layers

@ Object recognition: Supervised learning on the output of C2 cells.
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Infinite monkey theorem

From Wikipedia, the free encyclopedia

The infinite monkey
theorem states that a
monkey hitting keys at
random on a
typewriter keyboard
for an infinite amount
of time will almost

\ 4 0

surely type a given Given enough time, a o
text, such as the hypothetical chimpanzee typing at
complete works of random would, as part of its

output, almost surely produce all of

William Shakespeare. Shakespeare's plays.

Rather than learning, take refuge in having many, many cells.

(Cover, 1965)A complex pattern-classification problem, cast in a
high-dimensional space nonlinearly, is more likely to be linearly
cpnarable than in a2 lIow-dimenc<innal enace brovided that the ehace jé/27






HMAX model: Results

@ “paper clip” stimuli
@ Broad tuning curves wrt size, translation

@ Scrambling of the input image does not give rise to object
detections: not all conjunctions are preserved
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More recent version
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@ Use real images as inputs

_ : _ Do Wi _
@ S-cells convolution,e.g. h = (—n+\/W)’ y = g(h).
1
@ C-cell soft-max pooling h = Lﬁq
KD g X;
(some support from biology for such pooling)

@ Some unsupervised learning between layers [?]

16/27



@ Localization can be achieved by using a sliding-window method

@ Claimed as a model on a “rapid categorization task”, where
back-projections are inactive

@ Performance similar to human performance on flashed (20ms)
images

@ The model doesn’t do segmentation (as opposed to bounding
boxes)
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Learning invariances

@ Hard-code (convolutional network)
http://yann.lecun.com/exdb/lenet/

@ Supervised learning (show various sample and require same
output)

@ Use temporal continuity of the world. Learn invariance by seeing
object change, e.g. it rotates, it changes colour, it changes shape.
Algorithms: trace rule[?]

E.g. replace
Aw = x(t).y(t) with Aw = x(t).y(f)
where y(t) is temporally filtered y(t).
@ Similar principles: VisNet [?], Slow feature analysis.
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Slow feature analysis

Find slow varying features, these are likely relevant [?]
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Experiments: Altered visual world [?]
A Exposure phase

Non-swap exposure event
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A different flavour Object Recognition Model

[?]
@ Preprocess image to obtain interest points

@ At each interest point extract a local image descriptor (e.g. Lowe’s
SIFT descriptor). These can be clustered to give discrete “visual
words”

@ (w;, X;) pair at each interest point, defining visual word and
location

@ Define a generative model. Object has instantiation parameters 6
(location, scale, rotation etc)

@ Object also has parts, indexed by z
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P
p(wi,xi18) = > p(zi = ))p(wilzi = ))p(Xi|zi = J, 6)
j=0

@ Part 0 is the background (broad distributions for w and x)

@ p(x;|zi = j,0) will contain geometric information, e.g. relative
offset of part j from the centre of the model

n
p(W, X|0) = ] [ p(wi, xi|6)
i=1

p(W, X) = / p(W, X|0)p(6) d6
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Fergus, Perona, Zisserman (2005)
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Results and Discussion

@ Sudderth et al's model is generative, and can be trained
unsupervised (cf Serre et al)

@ There is not much in the way of top-down influences (except role
of 8)

@ The model doesn’t do segmentation
@ Use of context should boost performance
@ There is still much to be done to obtain human level performance!
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Including top-down interaction

@ Extensive top-down connections everywhere in the brain
@ One known role: attention. For the rest: many theories

[?]

Local parts can be ambiguous, but knowing global object at helps.
Top-down to set priors.

Improvement in object recognition is actually small,

but recognition and localization of parts is much better.
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