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Overview

Neurobiology of Vision
Computational Object Recognition: What’s the Problem?
Fukushima’s Neocognitron
HMAX model and recent versions
Other approaches
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Neurobiology of Vision

WHAT pathway: V1 → V2 → V4 → IT
WHERE pathway: V1 → V2 → V3 → MT/V5 → parietal lobe
IT (Inferotemporal cortex) has cells that are

Highly selective to particular objects (e.g. face cells)
Relatively invariant to size and position of objects, but typically
variable wrt 3D view

What and where information must be combined somewhere
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Invariances in higher visual cortex

[?]

4 / 27



Left: partial rotation invariance [?].
Right: clutter reduces translation invariance [?].
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thways/index.html
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Computational Object Recognition

The big problem is creating invariance to scaling, translation,
rotation (both in-plane and out-of-plane), and partial occlusion,
while at the same time being selective.
What about a back-propagation network that learns some function
f (Ix ,y )?

Large input dimension, need enormous training set
No invariances a priori

Objects are not generally presented against a neutral background,
but are embedded in clutter
Tasks: object-class recognition, specific object recognition,
localization, segmentation, ...
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Some Computational Models

Two extremes:
Extract 3D description of the world, and match it to stored 3D
structural models (e.g. human as generalized cylinders)
Large collection of 2D views (templates)

Some other methods
2D structural description (parts and spatial relationships)
Match image features to model features, or do pose-space
clustering (Hough transforms))

What are good types of features?

Feedforward neural network
Bag-of-features (no spatial structure; but what about the “binding
problem”?)
Scanning window methods to deal with translation/scale
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Fukushima’s Neocognitron

[?, ?]
To implement location invariance, “clone” (or replicate) a detector
over a region of space, and then pool the responses of the cloned
units
This strategy can then be repeated at higher levels, giving rise to
greater invariance
See also [?], convolutional neural networks
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HMAX model

[?]
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HMAX model

S1 detectors based on Gabor filters at various scales, rotations
and positions
S-cells (simple cells) convolve with local filters
C-cells (complex cells) pool S-responses with maximum
No learning between layers
Object recognition: Supervised learning on the output of C2 cells.
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Rather than learning, take refuge in having many, many cells.
(Cover, 1965)A complex pattern-classification problem, cast in a
high-dimensional space nonlinearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the space is
not densely populated.
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[?]
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HMAX model: Results

“paper clip” stimuli
Broad tuning curves wrt size, translation
Scrambling of the input image does not give rise to object
detections: not all conjunctions are preserved
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More recent version

[?]
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Use real images as inputs

S-cells convolution,e.g. h = (
∑

i wi xi

κ+
√∑

i w2
i

), y = g(h).

C-cell soft-max pooling h =
∑

xq+1
i

κ+
∑

k xq
i

(some support from biology for such pooling)
Some unsupervised learning between layers [?]
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Results

Localization can be achieved by using a sliding-window method
Claimed as a model on a “rapid categorization task”, where
back-projections are inactive
Performance similar to human performance on flashed (20ms)
images
The model doesn’t do segmentation (as opposed to bounding
boxes)
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Learning invariances

Hard-code (convolutional network)
http://yann.lecun.com/exdb/lenet/
Supervised learning (show various sample and require same
output)
Use temporal continuity of the world. Learn invariance by seeing
object change, e.g. it rotates, it changes colour, it changes shape.
Algorithms: trace rule[?]
E.g. replace
∆w = x(t).y(t) with ∆w = x(t).ỹ(t)
where ỹ(t) is temporally filtered y(t).
Similar principles: VisNet [?], Slow feature analysis.
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Slow feature analysis

Find slow varying features, these are likely relevant [?]

Find output y for which: 〈(dy(t)
dt )2〉 minimal,

while 〈y〉 = 0, 〈y2〉 = 1
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Experiments: Altered visual world [?]
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A different flavour Object Recognition Model

[?]
Preprocess image to obtain interest points
At each interest point extract a local image descriptor (e.g. Lowe’s
SIFT descriptor). These can be clustered to give discrete “visual
words”
(wi ,xi) pair at each interest point, defining visual word and
location
Define a generative model. Object has instantiation parameters θ
(location, scale, rotation etc)
Object also has parts, indexed by z
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p(wi ,xi |θ) =
P∑

j=0

p(zi = j)p(wi |zi = j)p(xi |zi = j ,θ)

Part 0 is the background (broad distributions for w and x)
p(xi |zi = j ,θ) will contain geometric information, e.g. relative
offset of part j from the centre of the model

p(W ,X |θ) =
n∏

i=1

p(wi ,xi |θ)

p(W ,X ) =

∫
p(W ,X |θ)p(θ) dθ
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Fergus, Perona, Zisserman (2005)

23 / 27

Results and Discussion

Sudderth et al’s model is generative, and can be trained
unsupervised (cf Serre et al)
There is not much in the way of top-down influences (except rôle
of θ)
The model doesn’t do segmentation
Use of context should boost performance
There is still much to be done to obtain human level performance!
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Including top-down interaction

Extensive top-down connections everywhere in the brain
One known role: attention. For the rest: many theories

[?]

Local parts can be ambiguous, but knowing global object at helps.
Top-down to set priors.
Improvement in object recognition is actually small,
but recognition and localization of parts is much better.
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