Overview

Object Recognition

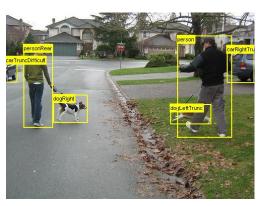
Chris Williams

Neural Information Processing School of Informatics, University of Edinburgh

January 15, 2018

- Neurobiology of Vision
- Computational Object Recognition: What's the Problem?
- Fukushima's Neocognitron
- HMAX model and more recent versions
- Some other approaches

Neurobiology of Vision


- $\blacktriangleright~$ WHAT pathway: V1 \rightarrow V2 \rightarrow V4 \rightarrow IT
- ▶ WHERE pathway: V1 \rightarrow V2 \rightarrow V3 \rightarrow MT/V5 \rightarrow parietal lobe
- IT (Inferotemporal cortex) has been shown to have cells that are relatively invariant to size and position of objects (e.g. face cells), but many are variable wrt view
- In the end what and where information must be combined, but it is not yet known where this happens

Invariances in higher visual cortex

1/23

- The big problem is creating *invariance* to scaling, translation, rotation (both in-plane and out-of-plane), and dealing with partial occlusion, while at the same time being selective
- However, note that humans/animals are not perfectly invariant, especially wrt 3D rotations
- Objects are not generally presented against a neutral background, but are embedded in *clutter*
- Object class recognition vs specific object recognition
- Tasks: classification, localization, segmentation and more

- Classification
 - Is there a dog in this image?
- Detection
 - Localize all the people (if any) in this image

5/23

Segmentation

...

Label each pixel as class x or background

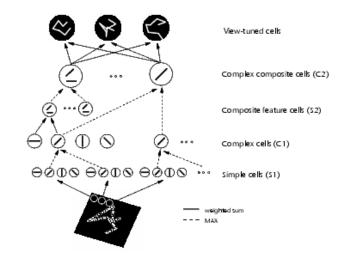
Some Computational Models

Two extremes:

- Extract 3D description of the world, and match it to stored 3D structural models (e.g. human as generalized cylinders)
- Collection of 2D views

Some other methods

- 2D structural description (parts and spatial relationships)
- Match image features to model features, or do pose-space clustering (Hough transforms)
 - What are good types of features?
- Feedforward neural network (large input dimension, needs huge training set; no invariances apriori)
- Bag-of-features (no spatial structure; but what about the "binding problem"?)
- Scanning window methods to deal with translation/scale

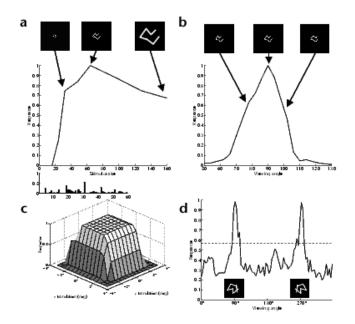

8/23

Fukushima's Neocognitron

Fukushima (1980), Fukushima (1988)

- We wish to deal with imprecise scaling and location information
- Strategy is to "clone" (or replicate) a detector over a region of space, and then pool the responses of the cloned units; this trades off selectivity and invariance
- This strategy can then be repeated at higher levels, giving rise to greater invariance
- S-cells (simple cells) do convolution with local filters
- C-cells (complex cells) do pooling (sum or maximum) and down-sampling
- Object detection is based on the output of C2 complex cells
- Note that penultimate layer is like a "bag of features"
- See also Le Cun et al (1990), convolutional neural networks

HMAX model



Reisenhuber and Poggio (1999)

9/23

HMAX model II

- S1 detectors based on Gabor filters at various scales, rotations and positions
- Riesenhuber and Poggio hand-coded S2 cells based on conjunctions of C1 cells (simple unsupervised learning)
- They used "paper clip" style stimuli
- Were able to show broad tuning curves wrt size, translation
- Scrambling of the input image does not give rise to object detections: not all conjunctions are preserved

Reisenhuber and Poggio (1999)

12/23

Serre et al (2007)

- Used real images as inputs
- As before, use Gabor filters at various orientations and scales as S1 features
- C1 takes max of S1 features over a range of scales and positions
- S2 layer of RBF units trained by using patterns of activation of the C1 layer patches as templates
- S2 units respond to patterns of edge/bar conjunctions
- Obtain K S2-layer maps, one for each C1 patch $(K \le 1000)$
- C2 computes max over all positions and scales of each S2 map
- Use a SVM classifier on C2 outputs

Results

13/23

 Claimed as a model on a "rapid categorization task", where back-projections are inactive

C

Local maximum over

position and scale.

13

and per patch

ilter (L2 RBF) with N previously

seen patches {Pi | i=1..N}. These

atches are in C1 format. Each

rientation in the patch is matche

o the corresponding orientation in

(n x n x 4)

Serre, Wolf, Bileschi, Riesenhuber, Poggio (2007)

The result is one image per C1

 Results on a animal vs non-animal rapid categorization task closely match human performance

Small Scale

Large Scale

S1

Apply battery of Gabor

filtration at 8 scales and

4 orientations (color

indicates orientation)

The full model uses 16

scales.

filters. Here we see

Input Image

gray-value

- Classification results (Caltech 101) are state-of-the-art
- Localization can be achieved by using a sliding-window method
- The model doesn't do segmentation (as opposed to bounding boxes)
- Similar performance can be obtained by bag-of-features models which don't use the same S1/C1 representations

М

50

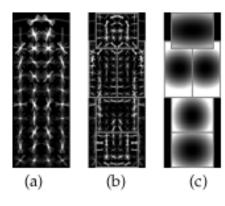
C

ne C2 values

king a max

ver all S2

re computed b


ociated with

given patch.

Thus, the C2 response has enoth N.

Felzenszwalb et al (2010)

- Current leading method for object localization in PASCAL VOC competitions (20 classes)
- The model is defined by a coarse root filter (a), several higher resolution part filters (b) and a spatial model for the location of each part relative to the root (c)
- The filters specify weights for histogram of oriented gradients features. Their visualization show the positive weights at different orientations.

Summary and Discussion

- Hierarchical feedforward pooling architectures are a common model for object recognition
- There are other possibilities: generative as opposed to discriminative models e.g. Sudderth et al (2005). Allows unsupervised training.
- Not much rôle for top-down influences in these models (e.g. for figure/ground separation)
- Many object recognition models are rather weak models of shape, and tend to focus on local texture descriptions
- Evaluation on standard datasets, e.g. PASCAL VOC competitions
- There is still much to be done to obtain human level performance!

Histogram of oriented gradients (HOG) features are local histogram of oriented gradient responses (cf C1 units in Serre et al, and Lowe's SIFT descriptors (2004))

- The visualization of the spatial models reflects the "cost" of placing the center of a part at different locations relative to the root.
- Scanning window approach to object localization

17/23

References I

- P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan.
 Object Detection with Discriminatively Trained Part Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32(9) (2010)
- Fukushima, K. Neocognitron: A self-organising multi-layered neural network. Biol. Cybern., 20:121-136 (1980)
- Fukushima, K. Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Networks, 1:119-130 (1988)
- Le Cun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information Processing Systems 2 (1990)

References II

- Logothetis, N. K. and Sheinberg, D. L. Visual Object Recognition. Ann Rev Neurosci 19 577-621 (1996)
- Lowe, D. G. Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60(2) 91-110 (2004)
- Riesenhuber, M. and Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neuro., 2:1019-1025 (1999)
- T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber and T. Poggio. Object recognition with cortex-like mechanisms. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 29 (3), pp. 411-426, (2007)
- Serre, T., Oliva, A., and Poggio, T. A feedforward architecture accounts for rapid categorization. Proc Natl Acad Sci USA, 104(15):6424-6429 (2007)

References III

 Sudderth, E., Torralba, A., Freeman, W. T., and Willsky, A. S. Learning Hierarchical Models of Scenes, Objects and Parts. In ICCV 2005.