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Neurobiology of Vision

@ WHAT pathway: V1 — V2 — V4 — IT (focus of our treatment)

@ WHERE pathway: V1 — V2 — V3 — MT/V5 — parietal lobe
@ IT (Inferotemporal cortex) has cells that are

e Highly selective to particular objects (e.g. face cells)
o Relatively invariant to size and position of objects, but typically
variable wrt 3D view

@ What and where information must be combined somewhere
('throw the ball at the dog’)



Example tasks

@ Classification
o Is there a dog in this
image?
@ Detection

o Localize all the
people (if any) in
this image

@ etc..
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Invariances in higher visual cortex

[?]
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Invariance is however limited

o
B
!

0 -

- II
| j
20} ) T
.| EEPPTIE | | | I YT

100

>

Neuron recording results

Spikes Sec”"
2 ©
2

s
[45]
[=]

s
n
(=]

o Blank
1800 1350 -90.0 -450 00 450 900 1350 1800 e 110 N background
(@]
B £ 100 N
| = N
mEEEE i
£ 80 Natural A
3 i Z 70| background

2
3

[o1]
o

a
3

6]
o

?:I,iliiil,Ilhim.iil“,h“im 0 10 20 30 40 50 60

1800 -1350 -900 -450 00 450 900 1350 180.0 . .
Distance of gaze to target object

Rotation Around Y-Axis (degrees)

Left: partial rotation invariance [?].
Right: clutter reduces translation invariance [?].
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Computational Object Recognition

@ The big problem is creating invariance to scaling, translation,
rotation (both in-plane and out-of-plane), and partial occlusion,
yet at the same time being selective.

@ Large input dimension, need enormous (labelled) training set +
tricks

@ Objects are not generally presented against a neutral background,
but are embedded in clutter

@ Within class variation of objects (e.g. cars, handwritten letters, ..)



Geometrical picture

[From Bengio 2009 review]
Pixel space. Same objects form manifold (potentially discontinuous,
and disconnected).
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History of artificial neural networks

@ McCullough & Pitts (1943): Binary neurons can implement any
finite state machine. Von Neumann used this for his architecture.

@ Rosenblatt (1962): Perceptron learning rule: Learning of (some)
binary classification problems.

@ Backprop (1980s): Universal function approximator. Generalizes,
but has local maxima.

@ Boltzmann machines (1980s): Probabilistic models. Long ignored
for being exceedingly slow.

@ 2005- : Backprop and variants popular again.



@ Supervised binary classification of K N-dimensional x* pattern
vectors.

@ y = H(h) = H(w.x + b), H is step function, h = w.x + b is net
input (‘field’)

Syn  Theithald

[ignore A; in figure for now, and assume x; is pixel intensity]
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Perceptron learning rule

@ Denote desired binary output for pattern i as d*. Rule:
Awl = nx'(d" — yH)
or, to be more robust, with margin
Aw! = nH(Nk — h*d")d*x!'

@ note, if patterns correct then Aw!* = 0 (stop-learning).
@ [flearnable, rule converges in polynomial time.
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Perceptron learning rule

@ Learnable if patterns are linearly separable.

@ Random patterns are typically learnable if #patterns < 2.#inputs,
K < 2N.

@ Mathematically solves set of inequalities.
@ General trick: replace bias b = wp.1 with ’always on’ input.
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Perceptron biology

Tricky questions
@ How is the supervisory signal coming into the neuron?
@ How is the stop-learning implemented in Hebbian model where
Aw; x Xjy?
@ Related to cerebellar learning (Marr-Albus theory), to learn reduce
motor errors.
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Perceptron and cerebellum
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Perceptron limitation

| 1
@ Perceptron with limited receptive field cannot determine

connectedness (give output 1 for connected patterns and 0 for
dis-connected).

@ This is the XOR problem, d = 1 if x; # x». This is the simplest
parity problem, d = (>, x;)mod2.
@ Equivalently, identity function problem, d = 1 if x; = xo.

@ In general: categorizations that are not linearly separable cannot
be learned (weight vector keeps wandering).
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Multi-layer perceptron (MLP)

@ Supervised algorithm that overcomes limited functions of the
single perceptron.

@ With continuous units and large enough single hidden layer, MLP
can approximate any continuous function! (and two hidden layers
approximate any function). Argument: write function as sum of
localized bumps, implement bumps in hidden layer.

@ Ultimate goal is not the learning of the patterns (after all we could
just make a database), but a sensible generalization. The
performance on test-set, not training set, matters.
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input x

o yi(xw, W) = g(¥3; Wyvy) = g (55 Wig(i wiexi))
@ Learning: back-propagation of errors. Mean squared error of P
training patterns:

P P
1
E=) Eu=32 [d' —y/(xw W)
n=1 n=1

Gradient descent (batch) " Aw —773—5” where w are all the
weights (input — hidden, hidden — output, biases).
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Stochastic descent: Pick arbitrary pattern, use Aw = —n%i;

instead of Aw = —n%. Quicker to calculate, and randomness

helps learning.

5, = i — G (Ck Wikvie) vy = 61y,

gﬁ; = > 06iWig' (D2, wixi) Xk

Start from random, smallish weights. Convergence time depends
strongly on lucky choice.

If g(x) = [1 + exp(—x)]~', one can use g'(x) = g(x)(1 — g(x)).
Normalize input (e.g. z-score)
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MLP tricks

Learning MLPs is slow and local maxima are present.

[from HKP, increasing learning rate. 2nd: fastest, 4th: too big]
@ Learning rate often made adaptive (first large, later small).

@ Sparseness priors are often added to prevent large negative
weights cancelling large positive weights.
eg E=33,(a" —yr(xw)2+ Y, wh

@ Other cost functions are possible.

@ Traditionally one hidden layer. More layers do not enhance
repertoire and slow down learning (but see below).
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MLP tricks

Momentum: previous update is added, hence wild direction
fluctuations in updates are smoothed.

T |

[from HKP. Same learning rate but with (right) and without momentum
(left)].

21/43



MLP examples

Essentially curve fitting. Best on problems that are not fully understood
/ hard to formulate.

@ Hand-written postcodes.
@ Self-driving car at 5km/h (~ 1990)
@ Backgammon game
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Auto-encoders

Autoencoders: Minimize E(input, output)

Fewer hidden units than input units: find optimal compression (PCA
when using linear units).



Biology of back-propagation?

@ How to back-propagate in biology?

@ O'Reilly (1996) Adds feedback weights (do not have to be exactly
symmetric).

@ Uses 2-phases. -phase: input clamped; +phase: input and output
clamped.

o Approximate Awj = 7(post;” — post;)pre;”

@ more when doing Boltzmann machines...

@ More recent work (Bengio, Lillicrap)
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Convolutional networks

Neocognitron [?, ?, ?]
@ To implement location invariance, “clone” (or replicate) a detector

over a region of space (weight-sharing), and then pool the
responses of the cloned units

@ This strategy can then be repeated at higher levels, giving rise to
greater invariance and faster training
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HMAX model
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HMAX model

@ Deep, hard-wired network

@ S1 detectors based on Gabor filters at various scales, rotations
and positions

@ S-cells (simple cells) convolve with local filters

@ C-cells (complex cells) pool S-responses with maximum

@ No learning between layers !

@ Object recognition: Supervised learning on the output of C2 cells.
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Rather than learning, take refuge in having many, many cells.
(Cover, 1965)A complex pattern-classification problem, cast in a
high-dimensional space non-linearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the space is
not densely populated.

Infinite monkey theorem

From Wikipedia, the free encyclopedia

-

The infinite monkey
theorem states that a
monkey hitting keys at
random on a
typewriter keyboard
for an infinite amount
of time will almost

surely type a given Given enough time, a &
text, such as the hypothetical chimpanzee typing at
complele works of random would, as part of its

output, almost surely produce all of

William Shakespeare. Shakespeare's plays.
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HMAX model: Results

@ “paper clip” stimuli
@ Broad tuning curves wrt size, translation

@ Scrambled input image does not give rise to object detections: not
all conjunctions are preserved
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Learning invariances

@ Hard-code (convolutional network)
http://yann.lecun.com/exdb/lenet/

@ Supervised learning: show samples and require same output.
Augmentation with mirror, partial and scaled images.

@ Use temporal continuity of the world. Learn invariance by seeing
object change, e.g. it rotates, it changes colour, it changes shape.
Algorithms: trace rule[?]

E.g. replace
Aw = x(t).y(t) with Aw = x(t).y(f)
where y(t) is temporally filtered y(t).
@ Similar principles: VisNet [?], Slow feature analysis.
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Slow feature analysis

Find slow varying features, these are likely relevant [?]

Primary sensory signal Object identity
F
H A
H
time t
I' |“ " Object 2D-location
top
| TP
“ l ' bottom
left
time t
.
: right \ — /
time t

X0 X

X3(t)

Find output y for which: <(dyT(tt))2) minimal,
while (y) = 0, (y?) =1
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Experiments: Altered visual world [?]
A Exposure phase

Non-swap exposure event

V V

Test Exposure  Test Exposure Test
phase phase phase phase phase —
-gs &ﬁ/ e s o——gNan-swap
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o 0 O Ol me
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Including top-down interaction

@ Extensive top-down connections everywhere in the brain
@ One known role: attention. For the rest: many theories

[?]

Local parts can be ambiguous, but knowing global object at helps.
Top-down to set priors.

Improvement in object recognition is actually small,

but recognition and localization of parts is much better.
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Deep MLPs

@ Traditional MLPs are also called shallow (1 or 2 hidden layers).

@ While deeper nets do not have more computational power. 1)
Some tasks require less nodes (e.g. 1 hidden layer: parity
requires exp. many hidden layer units) 2) they can lead to better
representations. Better representations lead to better
generalization and better learning.

@ Learning slows down in deep networks, as transfer functions g()
saturate at O or 1. (Aw x g’() — 0) So:

e Pre-training, e.g. with Boltzmann machines (see below)
o Convolutional networks
e Use non-saturating activation function.

@ Better representation by adding noisy/partial stimuli. This

artificially increases the training set and forces invariances.

35/43



Recurrent networks

@ MLPs have no dynamics

@ Recurrent networks are dynamic. Could be steady state(s),
periodic, or chaotic. With symmetric weights there can only be
fixed points (point or line attractors).

@ In recurrent networks it is much harder to find weights to be
altered (credit assignment). Often restrict to cases where
dynamics has fixed points.

@ Hopfield net; Boltzman machine; Liquid state machine

36/43



Liquid state machines

[?]
@ Motivation: arbitrary spatio-temporal computation without precise
design.

@ Create pool of spiking neurons with random connections.

@ Results in very complex dynamics if weights are strong enough
@ Similar to echo state networks (but those are rate based).

@ Both are known as reservoir computing

@ Similar theme as HMAX model: create rich repetoire and only
learn at the output layer.
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input

Various functions can be implemented by varying readout.
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Optimal reservoir?

Best reservoir has rich yet predictable dynamics.

Edge of Chaos [?]
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(x-axis is recurrent strength)
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Optimal reservoir?

K = 4, 3-bit parity
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Task: Parity(in(t),in(t — 1), in(t — 2))
Best (darkest in plot) at edge of chaos.
Does chaos exist in the brain?

@ In spiking network models: yes [?]
@ Inreal brains: ?
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Relation to Support Vector Machines

Map problem in to high dimensional space F; there it often becomes
linearly separable.
This can be done without much computational overhead (kernel trick).
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