
Neural networks and visual processing

Mark van Rossum

School of Informatics, University of Edinburgh

January 15, 2018

0Version: January 15, 2018.
1 / 43



Neurobiology of Vision

WHAT pathway: V1→ V2→ V4→ IT (focus of our treatment)
WHERE pathway: V1→ V2→ V3→ MT/V5→ parietal lobe
IT (Inferotemporal cortex) has cells that are

Highly selective to particular objects (e.g. face cells)
Relatively invariant to size and position of objects, but typically
variable wrt 3D view

What and where information must be combined somewhere
(’throw the ball at the dog’)

2 / 43



Example tasks

Classification
Is there a dog in this
image?

Detection
Localize all the
people (if any) in
this image

etc..

3 / 43



Invariances in higher visual cortex

[?]

4 / 43



Invariance is however limited

Left: partial rotation invariance [?].
Right: clutter reduces translation invariance [?].

5 / 43



Computational Object Recognition

The big problem is creating invariance to scaling, translation,
rotation (both in-plane and out-of-plane), and partial occlusion,
yet at the same time being selective.
Large input dimension, need enormous (labelled) training set +
tricks
Objects are not generally presented against a neutral background,
but are embedded in clutter
Within class variation of objects (e.g. cars, handwritten letters, ..)

6 / 43



Geometrical picture

[From Bengio 2009 review]
Pixel space. Same objects form manifold (potentially discontinuous,
and disconnected).

7 / 43



History of artificial neural networks

McCullough & Pitts (1943): Binary neurons can implement any
finite state machine. Von Neumann used this for his architecture.
Rosenblatt (1962): Perceptron learning rule: Learning of (some)
binary classification problems.
Backprop (1980s): Universal function approximator. Generalizes,
but has local maxima.
Boltzmann machines (1980s): Probabilistic models. Long ignored
for being exceedingly slow.
2005- : Backprop and variants popular again.

8 / 43



Perceptrons

Supervised binary classification of K N-dimensional xµ pattern
vectors.
y = H(h) = H(w.x + b), H is step function, h = w.x + b is net
input (’field’)

[ignore Ai in figure for now, and assume xi is pixel intensity]
9 / 43



Perceptron learning rule

Denote desired binary output for pattern µ as dµ. Rule:

∆wµ
i = ηxµi (dµ − yµ)

or, to be more robust, with margin κ

∆wµ
i = ηH(Nκ− hµdµ)dµxµi

note, if patterns correct then ∆wµ
i = 0 (stop-learning).

If learnable, rule converges in polynomial time.

10 / 43



Perceptron learning rule

Learnable if patterns are linearly separable.
Random patterns are typically learnable if #patterns < 2.#inputs,
K < 2N.
Mathematically solves set of inequalities.
General trick: replace bias b = wb.1 with ’always on’ input.

11 / 43



Perceptron biology

Tricky questions
How is the supervisory signal coming into the neuron?
How is the stop-learning implemented in Hebbian model where
∆wi ∝ xiy?
Related to cerebellar learning (Marr-Albus theory), to learn reduce
motor errors.

12 / 43



Perceptron and cerebellum

13 / 43



Perceptron and cerebellum

14 / 43



[Purkinje cell spikes recorded extra-cellularly + zoom]
Simple spikes: standard output. Complex spikes: IO feedback, trigger
plasticity.

15 / 43



Perceptron limitation

0

1

Perceptron with limited receptive field cannot determine
connectedness (give output 1 for connected patterns and 0 for
dis-connected).
This is the XOR problem, d = 1 if x1 6= x2. This is the simplest
parity problem, d = (

∑
i xi)mod2.

Equivalently, identity function problem, d = 1 if x1 = x2.
In general: categorizations that are not linearly separable cannot
be learned (weight vector keeps wandering).

16 / 43



Multi-layer perceptron (MLP)

Supervised algorithm that overcomes limited functions of the
single perceptron.
With continuous units and large enough single hidden layer, MLP
can approximate any continuous function! (and two hidden layers
approximate any function). Argument: write function as sum of
localized bumps, implement bumps in hidden layer.
Ultimate goal is not the learning of the patterns (after all we could
just make a database), but a sensible generalization. The
performance on test-set, not training set, matters.

17 / 43



yµi (xµ; w ,W ) = g(
∑

j Wijvj) = g
(∑

j Wijg(
∑

k wjkxk )
)

Learning: back-propagation of errors. Mean squared error of P
training patterns:

E =
P∑
µ=1

Eµ =
1
2

P∑
µ=1

[dµi − yµi (xµ; w ,W )]2

Gradient descent (batch) ”∆w ∝ −η ∂E
∂w ” where w are all the

weights (input→ hidden, hidden→ output, biases).

18 / 43



Stochastic descent: Pick arbitrary pattern, use ∆w = −η ∂Eµ

∂w
instead of ∆w = −η ∂E

∂w . Quicker to calculate, and randomness
helps learning.
∂Eµ

∂Wij
= (yi − di)g′(

∑
k Wikvk )vj ≡ δivj

∂Eµ

∂wjk
=
∑

i δiWijg′(
∑

l wjlxl)xk

Start from random, smallish weights. Convergence time depends
strongly on lucky choice.
If g(x) = [1 + exp(−x)]−1, one can use g′(x) = g(x)(1− g(x)).
Normalize input (e.g. z-score)

19 / 43



MLP tricks

Learning MLPs is slow and local maxima are present.

[from HKP, increasing learning rate. 2nd: fastest, 4th: too big]
Learning rate often made adaptive (first large, later small).
Sparseness priors are often added to prevent large negative
weights cancelling large positive weights.
e.g E = 1

2
∑

µ(dµ − yµ(xµ; w))2 + λ
∑

i,j w2
ij

Other cost functions are possible.
Traditionally one hidden layer. More layers do not enhance
repertoire and slow down learning (but see below).

20 / 43



MLP tricks

Momentum: previous update is added, hence wild direction
fluctuations in updates are smoothed.

[from HKP. Same learning rate but with (right) and without momentum
(left)].

21 / 43



MLP examples

Essentially curve fitting. Best on problems that are not fully understood
/ hard to formulate.

Hand-written postcodes.
Self-driving car at 5km/h (∼ 1990)
Backgammon game

22 / 43



Auto-encoders

Autoencoders: Minimize E(input ,output)
Fewer hidden units than input units: find optimal compression (PCA
when using linear units).

23 / 43



Biology of back-propagation?

How to back-propagate in biology?
O‘Reilly (1996) Adds feedback weights (do not have to be exactly
symmetric).
Uses 2-phases. -phase: input clamped; +phase: input and output
clamped.
Approximate ∆wij = η(post+i − post−i )pre−j
more when doing Boltzmann machines...
More recent work (Bengio, Lillicrap)

24 / 43



Convolutional networks

Neocognitron [?, ?, ?]
To implement location invariance, “clone” (or replicate) a detector
over a region of space (weight-sharing), and then pool the
responses of the cloned units
This strategy can then be repeated at higher levels, giving rise to
greater invariance and faster training

25 / 43



HMAX model

[?]

26 / 43



HMAX model

Deep, hard-wired network
S1 detectors based on Gabor filters at various scales, rotations
and positions
S-cells (simple cells) convolve with local filters
C-cells (complex cells) pool S-responses with maximum
No learning between layers !
Object recognition: Supervised learning on the output of C2 cells.

27 / 43



Rather than learning, take refuge in having many, many cells.
(Cover, 1965)A complex pattern-classification problem, cast in a
high-dimensional space non-linearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the space is
not densely populated.

28 / 43



[?]

29 / 43



HMAX model: Results

“paper clip” stimuli
Broad tuning curves wrt size, translation
Scrambled input image does not give rise to object detections: not
all conjunctions are preserved

30 / 43



Learning invariances

Hard-code (convolutional network)
http://yann.lecun.com/exdb/lenet/
Supervised learning: show samples and require same output.
Augmentation with mirror, partial and scaled images.
Use temporal continuity of the world. Learn invariance by seeing
object change, e.g. it rotates, it changes colour, it changes shape.
Algorithms: trace rule[?]
E.g. replace
∆w = x(t).y(t) with ∆w = x(t).ỹ(t)
where ỹ(t) is temporally filtered y(t).
Similar principles: VisNet [?], Slow feature analysis.

31 / 43



Slow feature analysis

Find slow varying features, these are likely relevant [?]

Find output y for which: 〈(dy(t)
dt )2〉 minimal,

while 〈y〉 = 0, 〈y2〉 = 1

32 / 43



Experiments: Altered visual world [?]

33 / 43



Including top-down interaction

Extensive top-down connections everywhere in the brain
One known role: attention. For the rest: many theories

[?]

Local parts can be ambiguous, but knowing global object at helps.
Top-down to set priors.
Improvement in object recognition is actually small,
but recognition and localization of parts is much better.

34 / 43



Deep MLPs

Traditional MLPs are also called shallow (1 or 2 hidden layers).
While deeper nets do not have more computational power. 1)
Some tasks require less nodes (e.g. 1 hidden layer: parity
requires exp. many hidden layer units) 2) they can lead to better
representations. Better representations lead to better
generalization and better learning.
Learning slows down in deep networks, as transfer functions g()
saturate at 0 or 1. (∆w ∝ g′()→ 0) So:

Pre-training, e.g. with Boltzmann machines (see below)
Convolutional networks
Use non-saturating activation function.

Better representation by adding noisy/partial stimuli. This
artificially increases the training set and forces invariances.

35 / 43



Recurrent networks

MLPs have no dynamics
Recurrent networks are dynamic. Could be steady state(s),
periodic, or chaotic. With symmetric weights there can only be
fixed points (point or line attractors).
In recurrent networks it is much harder to find weights to be
altered (credit assignment). Often restrict to cases where
dynamics has fixed points.
Hopfield net; Boltzman machine; Liquid state machine

36 / 43



Liquid state machines

[?]
Motivation: arbitrary spatio-temporal computation without precise
design.
Create pool of spiking neurons with random connections.
Results in very complex dynamics if weights are strong enough
Similar to echo state networks (but those are rate based).
Both are known as reservoir computing
Similar theme as HMAX model: create rich repetoire and only
learn at the output layer.

37 / 43



Various functions can be implemented by varying readout.
38 / 43



Optimal reservoir?

Best reservoir has rich yet predictable dynamics.
Edge of Chaos [?]

Network 250 binary nodes, wij = N (0, σ2)
(x-axis is recurrent strength)

39 / 43



Optimal reservoir?

Task: Parity(in(t), in(t − 1), in(t − 2))
Best (darkest in plot) at edge of chaos.
Does chaos exist in the brain?

In spiking network models: yes [?]
In real brains: ?

40 / 43



Relation to Support Vector Machines

Map problem in to high dimensional space F ; there it often becomes
linearly separable.
This can be done without much computational overhead (kernel trick).

41 / 43



References I

42 / 43


