
Neural networks and visual processing

Mark van Rossum

School of Informatics, University of Edinburgh

January 24, 2018

0Version: January 24, 2018.
1 / 71

Overview

So far we have discussed unsupervised learning up to V1
For most technology applications (except perhaps compression),
V1 description is not enough. Yet it is not clear how to proceed to
higher areas.
At some point supervised learning will be necessary to attach
labels. Hopefully this can be postponed to very high levels.
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Neurobiology of Vision

WHAT pathway: V1→ V2→ V4→ IT (focus of our treatment)
WHERE pathway: V1→ V2→ V3→ MT/V5→ parietal lobe
IT (Inferotemporal cortex) has cells that are

Highly selective to particular objects (e.g. face cells)
Relatively invariant to size and position of objects, but typically
variable wrt 3D view

What and where information must be combined somewhere
(’throw the ball at the dog’)
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Example tasks

Classification
Is there a dog in this
image?

Detection
Localize all the
people (if any) in
this image

etc..

4 / 71



Invariances in higher visual cortex

[Logothetis and Sheinberg, 1996]
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Invariance is however limited

Left: partial rotation invariance [Logothetis and Sheinberg, 1996].
Right: clutter reduces translation invariance [Rolls and Deco, 2002].
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Computational Object Recognition

The big problem is creating invariance to scaling, translation,
rotation (both in-plane and out-of-plane), and partial occlusion,
yet at the same time being selective.
Large input dimension, need enormous (labelled) training set +
tricks
Objects are not generally presented against a neutral background,
but are embedded in clutter
Within class variation of objects (e.g. cars, handwritten letters, ..)
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Geometrical picture

[From Bengio 2009 review]
Pixel space. Same objects form manifold (potentially discontinuous,
and disconnected).
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Some Computational Models

Two extremes:
Extract 3D description of the world, and match it to stored 3D
structural models (e.g. human as generalized cylinders)
Large collection of 2D views (templates)

Some other methods
2D structural description (parts and spatial relationships)
Match image features to model features, or do pose-space
clustering (Hough transforms))

What are good types of features?

Feedforward neural network
Bag-of-features (no spatial structure; but what about the “binding
problem”?)
Scanning window methods to deal with translation/scale
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AI

[Bengio et al., 2014]
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History

McCullough & Pitts (1943): Binary neurons can implement any
finite state machine. Von Neumann used this for his architecture.
Rosenblatt (1962): Perceptron learning rule: Learning of (some)
binary classification problems.
Backprop (1980s): Universal function approximator. Generalizes,
but has local maxima.
Boltzmann machines (1980s): Probabilistic models. Long ignored
for being exceedingly slow.
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Perceptrons

Supervised binary classification of K N-dimensional xµ pattern
vectors.
y = H(h) = H(w.x + b), H is step function, h = w.x + b is net
input (’field’)

[ignore Ai in figure for now, and assume xi is pixel intensity]
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Perceptron learning rule

Denote desired binary output for pattern µ as dµ. Rule:

∆wµ
i = ηxµi (dµ − yµ)

or, to be more robust, with margin κ

∆wµ
i = ηH(Nκ− hµdµ)dµxµi

note, if patterns correct then ∆wµ
i = 0 (stop-learning).

If learnable, rule converges in polynomial time.
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Perceptron learning rule

Learnable if patterns are linearly separable.
Random patterns are typically learnable if #patterns < 2.#inputs,
K < 2N.
Mathematically solves set of inequalities.
General trick: replace bias b = wb.1 with ’always on’ input.
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Perceptron biology

Tricky questions
How is the supervisory signal coming into the neuron?
How is the stop-learning implemented in Hebbian model where
∆wi ∝ xiy?
Perhaps related to cerebellar learning (Marr-Albus theory)
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Perceptron and cerebellum
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Perceptron and cerebellum
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[Purkinje cell spikes recorded extra-cellularly + zoom]
Simple spikes: standard output. Complex spikes: IO feedback, trigger
plasticity.
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Perceptron limitation

0

1

Perceptron with limited receptive field cannot determine
connectedness (give output 1 for connected patterns and 0 for
dis-connected).
This is the XOR problem, d = 1 if x1 6= x2. This is the simplest
parity problem, d = (

∑
i xi)mod2.

Equivalently, identity function problem, d = 1 if x1 = x2.
In general: categorizations that are not linearly separable cannot
be learned (weight vector keeps wandering).
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Multi-layer perceptron (MLP)

Supervised algorithm that overcomes limited functions of the
single perceptron.
With continuous units and large enough single hidden layer, MLP
can approximate any continuous function! (and two hidden layers
approximate any function). Argument: write function as sum of
localized bumps, implement bumps in hidden layer.
Ultimate goal is not the learning of the patterns (after all we could
just make a database), but a sensible generalization. The
performance on test-set, not training set, matters.
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yµi (xµ; w ,W ) = g(
∑

j Wijvj) = g
(∑

j Wijg(
∑

k wjkxk )
)

Learning: back-propagation of errors. Mean squared error of P
training patterns:

E =
P∑

µ=1

Eµ =
1
2

P∑

µ=1

[dµi − yµi (xµ; w ,W )]2

Gradient descent (batch) ”∆w ∝ −η ∂E
∂w ” where w are all the

weights (input→ hidden, hidden→ output, biases).
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Stochastic descent: Pick arbitrary pattern, use ∆w = −η ∂Eµ

∂w
instead of ∆w = −η ∂E

∂w . Quicker to calculate, and randomness
helps learning.
∂Eµ

∂Wij
= (yi − di)g′(

∑
k Wikvk )vj ≡ δivj

∂Eµ

∂wjk
=
∑

i δiWijg′(
∑

l wjlxl)xk

Start from random, smallish weights. Convergence time depends
strongly on lucky choice.
If g(x) = [1 + exp(−x)]−1, one can use g′(x) = g(x)(1− g(x)).
Normalize input (e.g. z-score)
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MLP tricks

Learning MLPs is slow and local maxima are present.

[from HKP, increasing learning rate. 2nd: fastest, 4th: too big]
Learning rate often made adaptive (first large, later small).
Sparseness priors are often added to prevent large negative
weights cancelling large positive weights.
e.g E = 1

2
∑

µ(dµ − yµ(xµ; w))2 + λ
∑

i,j w2
ij

Other cost functions are possible.
Traditionally one hidden layer. More layers do not enhance
repertoire and slow down learning (but see below).
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MLP tricks

Momentum: previous update is added, hence wild direction
fluctuations in updates are smoothed.

[from HKP. Same learning rate but with (right) and without momentum
(left)].
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MLP examples

Essentially curve fitting. Best on problems that are not fully understood
/ hard to formulate.

Hand-written postcodes.
Self-driving car at 5km/h (∼ 1990)
Backgammon game
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MLP sequence data

Temporal patterns by for instance setting input vector as
{s1(t), s2(t), . . . sn(t), s1(t − 1), . . . sn(t − 1)}.

Context units that decay over time (Ellman net)

26 / 71

Auto-encoders

Autoencoders: Minimize E(input ,output)
Fewer hidden units than input units: find optimal compression (PCA
when using linear units).
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Biology of back-propagation?

How to back-propagate in biology?
O‘Reilly (1996) Adds feedback weights (do not have to be exactly
symmetric).
Uses 2-phases. -phase: input clamped; +phase: input and output
clamped.
Approximate ∆wij = η(post+i − post−i )pre−j
more when doing Boltzmann machines...
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Convolutional networks

Neocognitron
[Fukushima, 1980, Fukushima, 1988, LeCun et al., 1990]

To implement location invariance, “clone” (or replicate) a detector
over a region of space (weight-sharing), and then pool the
responses of the cloned units
This strategy can then be repeated at higher levels, giving rise to
greater invariance and faster training
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HMAX model

[Riesenhuber and Poggio, 1999]
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HMAX model

Deep, hard-wired network
S1 detectors based on Gabor filters at various scales, rotations
and positions
S-cells (simple cells) convolve with local filters
C-cells (complex cells) pool S-responses with maximum
No learning between layers !
Object recognition: Supervised learning on the output of C2 cells.
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Rather than learning, take refuge in having many, many cells.
(Cover, 1965)A complex pattern-classification problem, cast in a
high-dimensional space non-linearly, is more likely to be linearly
separable than in a low-dimensional space, provided that the space is
not densely populated.
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[Riesenhuber and Poggio, 1999]
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HMAX model: Results

“paper clip” stimuli
Broad tuning curves wrt size, translation
Scrambled input image does not give rise to object detections: not
all conjunctions are preserved
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More recent version

[Serre et al., 2007]
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Use real images as inputs

S-cells convolution,e.g. h = (
∑

i wi xi

κ+
√∑

i w2
i

), y = g(h).

C-cell soft-max pooling h =
∑

xq+1
i

κ+
∑

k xq
i

(some support from biology for such pooling)
Some unsupervised learning between layers [Serre et al., 2005]
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HMAX model: Results

Localization can be achieved by using a sliding-window method
Claimed as a model on a “rapid categorization task”, where
back-projections are inactive
Performance similar to human performance on flashed (20ms)
images
The model doesn’t do segmentation (as opposed to bounding
boxes)
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Learning invariances

Hard-code (convolutional network)
http://yann.lecun.com/exdb/lenet/
Supervised learning (show samples and require same output)
Use temporal continuity of the world. Learn invariance by seeing
object change, e.g. it rotates, it changes colour, it changes shape.
Algorithms: trace rule[Földiák, 1991]
E.g. replace
∆w = x(t).y(t) with ∆w = x(t).ỹ(t)
where ỹ(t) is temporally filtered y(t).
Similar principles: VisNet [Rolls and Deco, 2002], Slow feature
analysis.
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Slow feature analysis

Find slow varying features, these are likely relevant
[Wiskott and Sejnowski, 2002]

Find output y for which: 〈(dy(t)
dt )2〉 minimal,

while 〈y〉 = 0, 〈y2〉 = 1
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Experiments: Altered visual world [Li and DiCarlo, 2010]
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Including top-down interaction

Extensive top-down connections everywhere in the brain
One known role: attention. For the rest: many theories

[Epshtein et al., 2008]

Local parts can be ambiguous, but knowing global object at helps.
Top-down to set priors.
Improvement in object recognition is actually small,
but recognition and localization of parts is much better.
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Deep MLPs

Traditional MLPs are also called shallow (1 or 2 hidden layers).
While deeper nets do not have more computational power. 1)
Some tasks require less nodes (e.g. 1 hidden layer: parity
requires exp. many hidden layer units) 2) they can lead to better
representations. Better representations lead to better
generalization and better learning.
Learning slows down in deep networks, as transfer functions g()
saturate at 0 or 1. (∆w ∝ g′()→ 0) So:

Pre-training, e.g. with Boltzmann machines (see below)
Convolutional networks
Use non-saturating activation function.

Better representation by adding noisy/partial stimuli. This
artificially increases the training set and forces invariances.
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AI

[Bengio et al., 2014]
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Role of representation

Finding good representation solves most problems 90%
Similarly, bad representation can make problem very hard.
E.g. odd/even number categorization using base-2 (only last bit
matters ) vs base-3 (all bits matter) representation.
E.g. recognition of images after fixed, random scrambling is
difficult for humans. This is the task naive MLPs are faced with.
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Recurrent networks

MLPs have no dynamics
Recurrent networks are dynamic. Could be steady state(s),
periodic, or chaotic. With symmetric weights there can only be
fixed points (point or line attractors).
In recurrent networks it is much harder to find weights to be
altered. Often restrict to cases where dynamics has fixed points.
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Recurrent networks: Hopfield networks

All to all connected network (can be relaxed)
Binary units si = ±1, or rate with sigmoidal transfer.
Dynamics si(t + 1) = sign[

∑
j wijsj(t)] or continuous version

dr(t)
dt = −r + g(W r(t)).

Using symmetric weights wij = wji , we can define energy
E = −1

2
∑

ij siwijsj .
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Under these conditions network moves from initial condition
(stimulus, s(t = 0) = x) into the closest attractor state (’memory’)
and stays there.
Auto-associative, pattern completion
Simple (suboptimal) learning rule: wij =

∑M
µ xµi xµj

(µ indexes patterns xµ).
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Indirect experimental evidence using maze
deformation[Wills et al., 2005]
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Winner-less competition

How to escape from attractor states?
Noise, asymmetric connections, adaptation.

From [Ashwin and Timme, 2005].
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Liquid state machines

[Maass et al., 2002]
Motivation: arbitrary spatio-temporal computation without precise
design.
Create pool of spiking neurons with random connections.
Results in very complex dynamics if weights are strong enough
Similar to echo state networks (but those are rate based).
Both are known as reservoir computing
Similar theme as HMAX model: create rich repetoire and only
learn at the output layer.
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Various functions can be implemented by varying readout.
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Optimal reservoir?

Best reservoir has rich yet predictable dynamics.
Edge of Chaos [Bertschinger and Natschlaeger, 2004]

Network 250 binary nodes, wij = N (0, σ2)
(x-axis is recurrent strength)
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Optimal reservoir?

Task: Parity(in(t), in(t − 1), in(t − 2))
Best (darkest in plot) at edge of chaos.
Does chaos exist in the brain?

In spiking network models: yes
[van Vreeswijk and Sompolinsky, 1996]
In real brains: ?
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Relation to Support Vector Machines

Map problem in to high dimensional space F ; there it often becomes
linearly separable.
This can be done without much computational overhead (kernel trick).
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Boltzmann machines

Hopfield network is not perfect. It is impossible to learn only
(1,1,−1), (−1,−1,−1), (1,−1,1), (−1,1,1) but not
(−1,−1,1), (1,1,1), (−1,1,−1), (1,−1,1) (XOR again)...
Because 〈xi〉 =

〈
xixj
〉

= 0
Boltmann machines have ±1 units and include two, somewhat
unrelated, modifications:

Introduce hidden units, these can extract abstract features.
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Boltzmann machines

Stochastic updating: p(si = 1) = 1
1+e−2βEi

Ei =
∑

j wijsj − θi , E =
∑

i Ei .
T = 1/β is temperature (set to some arbitrary value).
Boltzmann distribution

P(s) =
exp(−βE(s))

Z

where Z =
∑

s exp(−βE(s))
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Boltzmann machines

Boltzmann machine learns arbitrary P(v).
Can thus be used for auto-association (pattern completion)
Or, by labelling some visible units as inputs and others as output,
can be used as if it were a associator like an MLP.
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Learning in Boltzmann machines

The generated probability for state sα, after equilibrium is reached, is
given by the Boltzmann distribution

Pα =
1
Z

∑

γ

e−βHαγ

Hαγ = −1
2

∑

ij

wijsisj

Z =
∑

αβ

e−βHαγ

where α labels states of visible units, γ the hidden states.
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As in other generative models, we match true distribution to generated
one. Minimize KL divergence between input and generated
distribution.

KL =
∑

α

Gα log
Gα

Pα

Minimize to get [Ackley et al., 1985, Hertz et al., 1991]

∆wij = ηβ[
〈
sisj
〉

clamped −
〈
sisj
〉

free]

(note, wij = wji )
Wake (’clamped’) phase vs. sleep (’dreaming’) phase

Clamped phase: Hebbian type learning. Average over input
patterns and hidden states.
Sleep phase: unlearn erroneous correlations.

The hidden units will ’discover’ statistical regularities.// Biology of
phases unknown.
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Boltzmann machines: applications

Shifter circuit.
Learning symmetry [Sejnowski et al., 1986]. Create a network that
categorizes horizontal, vertical, diagonal symmetry (2nd order
predicate).
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Boltzmann machines: auto-encoders

Autoencoders: Minimize E(input ,output)
Fewer hidden units than input units: find optimal compression (PCA).
More hidden units: impose for instance sparseness.
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Restricted Boltzmann

Need for multiple relaxation runs for every weight update (triple loop),
makes training Boltzmann networks very slow.
Speed up learning in restricted Boltzmann:

No hidden-hidden connections

Don’t wait for the sleep state to fully settle, one step is enough.
Stack multiple layers (deep-learning)
Application: high quality auto-encoder (i.e. compression)
[Hinton and Salakhutdinov, 2006]

[also good webtalks/tutorials by Hinton on this]
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Sparse deep belief net model for visual area V2

[Lee et al., 2008]

Consider an RBM with Gaussian visible units

E(u,v) =
1

2σ2

∑

i

u2
i −

1
σ2


∑

i

ciui +
∑

j

bjvj +
∑

i,j

uivjwij




p(ui |v) ∼ N(ci +
∑

j wijvj , σ
2)

Also impose a sparsity prior on the hidden units, with target
sparseness p

∑

j

||p − 1
m

m∑

k=1

E[v (k)
j |u(k)]||2

Layer 2 trained after layer 1 has learned (DBN)
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First layer filters

Second layer: each unit “looks at” a small number of first layer units,
e.g.

The leftmost patch in each group is a visualization of the model V2 basis, obtained by taking a weighted linear combination of the

first layer bases to which it is connected.

Properties of “V2” units can be compared to neural data.

64 / 71



Recurrent models: Ising model of neural activity

To describe data of retinal network, use Ising model
[Schneidman et al., 2006]

P(r) =
1
Z

e(−
∑

i hi ri−
∑

ij wij ri rj )

(But maybe it does not work well in large networks [Roudi et al., 2009])
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Generative models

[Berkes et al., 2011]
During development spontaneous activity matched stimulus-evoked
activity better and better.
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