Information Theory

Mark van Rossum

School of Informatics, University of Edinburgh

January 15, 2018
Why information theory

Understanding the neural code.

- Encoding and decoding. We imposed coding schemes, such as 2nd-order kernel, or NLP. We possibly lost information in doing so.
- Instead, use information:
 - Don’t need to impose encoding or decoding scheme (non-parametric).
 - In particular important for 1) spike timing codes, 2) higher areas.
 - Estimate how much information is coded in certain signal.

Caveats:

- No easy decoding scheme for organism (upper bound only)
- Requires more data and biases are tricky
Overview

- Entropy, Mutual Information
- Entropy Maximization for a Single Neuron
- Maximizing Mutual Information
- Estimating information
- Reading: Dayan and Abbott ch 4, Rieke
The entropy of a quantity is defined as
\[H(X) = - \sum_x P(x) \log_2 P(x) \]
This is not ’derived’, nor fully unique, but it fulfills these criteria:

- Continuous
- If \(p_i = \frac{1}{n} \), it increases monotonically with \(n \). \(H = \log_2 n \).
- Parallel independent channels add.

“Unit”: bits
Entropy can be thought of as physical entropy, “richness” of distribution
[?, ?, ?]
Entropy

Discrete variable

\[H(R) = - \sum_r p(r) \log_2 p(r) \]

Continuous variable at resolution \(\Delta r \)

\[H(R) = - \sum_r p(r) \Delta r \log_2 (p(r) \Delta r) = - \sum_r p(r) \Delta r \log_2 p(r) - \log_2 \Delta r \]

letting \(\Delta r \to 0 \) we have

\[\lim_{\Delta r \to 0} [H + \log_2 \Delta r] = - \int p(r) \log_2 p(r) \, dr \]

(also called differential entropy)
Joint, Conditional entropy

Joint entropy:

\[H(S, R) = - \sum_{r,s} P(S, R) \log_2 P(S, R) \]

Conditional entropy:

\[H(S|R) = \sum_r P(R = r) H(S|R = r) \]

\[= - \sum_r P(r) \sum_s P(s|r) \log_2 P(s|r) \]

\[= H(S, R) - H(R) \]

If \(S, R \) are independent

\[H(S, R) = H(S) + H(R) \]
Mutual information:

\[I_m(R; S) = \sum_{r,s} p(r, s) \log_2 \frac{p(r, s)}{p(r)p(s)} \]

\[= H(R) - H(R|S) = H(S) - H(S|R) \]

- Measures reduction in uncertainty of \(R \) by knowing \(S \) (or vice versa)
- \(I_m(R; S) \geq 0 \)
- The continuous version is the difference of two entropies, the \(\Delta r \) divergence cancels
The joint histogram determines mutual information. Given $P(r, s) \Rightarrow I_m$.

Mutual Information

$P(x,y)$

x y
Mutual Information: Examples

<table>
<thead>
<tr>
<th>Y₂</th>
<th>smoker</th>
<th>non smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>lung cancer</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>no lung cancer</td>
<td>0</td>
<td>2/3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y₁</th>
<th>non smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>smoker</td>
<td></td>
</tr>
<tr>
<td>non smoker</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y₂</th>
<th>smoker</th>
<th>non smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>lung cancer</td>
<td>1/9</td>
<td>2/9</td>
</tr>
<tr>
<td>no lung cancer</td>
<td>2/9</td>
<td>4/9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Y₁</th>
<th>non smoker</th>
</tr>
</thead>
<tbody>
<tr>
<td>smoker</td>
<td></td>
</tr>
<tr>
<td>non smoker</td>
<td></td>
</tr>
</tbody>
</table>
Mutual Information: Examples

<table>
<thead>
<tr>
<th></th>
<th>Y_1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>smoker</td>
<td>1/3</td>
<td>non smoker</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>lung cancer</td>
<td></td>
<td>no lung cancer</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2/3</td>
</tr>
</tbody>
</table>

Only for the left joint probability $I_m > 0$ (how much?). On the right, knowledge about Y_1 does not inform us about Y_2.
Kullback-Leibler divergence

- KL-divergence measures distance between two probability distributions
 \[D_{KL}(P \| Q) = \int P(x) \log_2 \frac{P(x)}{Q(x)} \, dx, \text{ or } D_{KL}(P \| Q) \equiv \sum_i P_i \log_2 \frac{P_i}{Q_i} \]
- Not symmetric, but can be symmetrized
 \[I_m(R; S) = D_{KL}(p(r, s) \| p(r)p(s)). \]
- Often used as probabilistic cost function: \(D_{KL}(data \| model). \)
- Other probability distances exist (e.g. earth-movers distance)
Mutual info between jointly Gaussian variables

\[I(Y_1; Y_2) = \int \int P(y_1, y_2) \log_2 \frac{P(y_1, y_2)}{P(y_1)P(y_2)} \, dy_1 \, dy_2 = -\frac{1}{2} \log_2(1 - \rho^2) \]

\(\rho \) is (Pearson-r) correlation coefficient.
Populations of Neurons

Given

\[H(R) = - \int p(r) \log_2 p(r) dr - N \log_2 \Delta r \]

and

\[H(R_i) = - \int p(r_i) \log_2 p(r_i) dr - \log_2 \Delta r \]

We have

\[H(R) \leq \sum_i H(R_i) \]

(proof, consider KL divergence)
Reduncancy can be defined as (compare to above)

\[R = \sum_{i=1}^{n_r} I(r_i; s) - I(r; s). \]

Some codes have \(R > 0 \) (redundant code), others \(R < 0 \) (synergistic)

Example of synergistic code: \(P(r_1, r_2, s) \) with
\[P(0, 0, 1) = P(0, 1, 0) = P(1, 0, 0) = P(1, 1, 1) = \frac{1}{4} \]
\[I_m(R; S) = H(R) - H(R|S) \]

- If noise entropy \(H(R|S) \) is independent of the transformation \(S \rightarrow R \), we can maximize mutual information by maximizing \(H(R) \) under given constraints.

- Possible constraint: response \(r \) is \(0 < r < r_{\text{max}} \). Maximal \(H(R) \) if \(\Rightarrow p(r) \sim U(0, r_{\text{max}}) \) (\(U \) is uniform dist).

- If average firing rate is limited, and \(0 < r < \infty \): exponential distribution is optimal \(p(x) = 1/\bar{x}\exp(-x/\bar{x}) \). \(H = \log_2 e\bar{x} \)

- If variance is fixed and \(-\infty < r < \infty \): Gaussian distribution. \(H = \frac{1}{2} \log_2(2\pi e\sigma^2) \) (note funny units)
Let \(r = f(s) \) and \(s \sim p(s) \). Which \(f \) (assumed monotonic) maximizes \(H(R) \) using max firing rate constraint? Require:
\[
P(r) = \frac{1}{r_{\text{max}}} \]

\[
p(s) = p(r) \frac{dr}{ds} = \frac{1}{r_{\text{max}}} \frac{df}{ds}
\]

Thus \(df/ds = r_{\text{max}}p(s) \) and
\[
f(s) = r_{\text{max}} \int_{s_{\text{min}}}^{s} p(s') ds'
\]

This strategy is known as \textit{histogram equalization} in signal processing.
Evidence that the large monopolar cell in the fly visual system carries out histogram equalization.

Contrast response for fly large monopolar cell (points) matches environment statistics (line) [?](but changes in high noise conditions).
V1 contrast responses

Figure 3. The distribution of image contrast in natural scenes: (a) both positive and negative, and (b) positive alone. In this study, sensor responses were pooled across 46 images, 5 spatial frequencies, and 4 orientations. The contrast bin width was 1%. (c) The integral of the positive-contrast histogram shown by the solid line defines the optimal contrast-response function. A hyperbolic function shown by the dotted line with $R_{max} = 1.0$, $C_{50} = 6.35\%$, and $n = 1.85$ provides a good fit to the data. SD = standard deviation.

Similar in V1, but On and Off channels [?]
Information of time varying signals

Single analog channel with Gaussian signal s and Gaussian noise η:

$$r = s + \eta$$

$$I = \frac{1}{2} \log_2(1 + \frac{\sigma^2_s}{\sigma^2_\eta}) = \frac{1}{2} \log_2(1 + SNR)$$

For time dependent signals

$$I = \frac{1}{2} T \int \frac{d\omega}{2\pi} \log_2(1 + \frac{s(\omega)}{n(\omega)})$$

To maximize information, when variance of the signal is constrained, use all frequency bands such that signal+noise = constant. Whitening. Water filling analog:
Information of graded synapses

Light - (photon noise) - photoreceptor - (synaptic noise) - LMC
At low light levels photon noise dominates, synaptic noise is negligible.
Information rate: 1500 bits/s [?].
Spiking neurons: maximal information

Spike train with \(N = T/\delta t \) bins \(\delta t \) "time-resolution".

\(pN = N_1 \) events, \#words = \(\frac{N!}{N_1!(N-N_1)!} \)

Maximal entropy if all words are equally likely.

\[
H = \sum p_i \log_2 p_i = \log_2 N! - \log_2 N_1! - \log_2(N - N_1)!
\]

Use for large \(x \) that \(\log x! \approx x(\log x - 1) \)

\[
H = -\frac{T}{\delta t} \left[p \log_2 p + (1 - p) \log_2(1 - p) \right]
\]

For low rates \(p \ll 1 \), setting \(\lambda = (\delta t)p \):

\[
H = T\lambda \log_2 \left(\frac{e}{\lambda \delta t} \right)
\]
Spiking neurons

Calculation incorrect when multiple spikes per bin. Instead, for large bins maximal information for exponential distribution:

\[P(n) = \frac{1}{Z} \exp[-n \log(1 + \frac{1}{\langle n \rangle})] \]

\[H = \log_2(1 + \langle n \rangle) + \langle n \rangle \log_2(1 + \frac{1}{\langle n \rangle}) \approx \log_2(1 + \langle n \rangle) + 1 \]
Spiking neurons: rate code

- Measure rate in window T, during which stimulus is constant.
- Periodic neuron can maximally encode $[1 + (f_{max} - f_{min})T]$ stimuli
- $H \approx \log_2[1 + (f_{max} - f_{min})T]$. Note, only $\propto \log(T)$

Figure 2 Information capacity of a completely regular neuron (solid line) as a function of the duration of a maintained stimulus. The dashed lines are upper and lower limits which converge rapidly as time (on a logarithmic scale) increases. The values were calculated for the example described in the text. The range of neuronal impulse frequencies was from 10 to 100 impulses/sec.
Figure 7 Schematic representation of the information capacity as a function of stimulus duration for a neuron, (a) discharging randomly and using a frequency code, (b) discharging fairly regularly and using a frequency code, (c) using a binary pulse code, and (d) using an interval code. Explanation in text.

Similar behaviour for Poisson: \(H \propto \log(T) \)
Spiking neurons: dynamic stimuli

Fig. 3. Word frequency distributions and information transfer. (A) Two segments from 100 response traces of H1, starting at about 600 and 1800 ms, respectively, after onset of the repeated stimulus of Fig. 2. (B) Construction of local word frequencies. We start with a set of spike trains in response to a repeated random velocity sequence. Beginning at 600 ms these spike trains are divided in 10 contiguous 3-ms bins, as indicated by the array of vertical lines. For each trial, the spikes in each of the 10 bins are counted, and this set of 10 numbers forms a word, \(W \). Here almost all words are binary strings, as two spikes occur only very rarely within 3 ms. This procedure gives us as many words as there are trials (here 900). From this set we compute the probability for each word, and the resulting distribution is depicted in the histogram. \(P(W) \) = 600 ms, where the words are ordered according to their probability. (C) As in (B), but now starting at 1800 ms. (D) Distribution, \(P(W) \), of all words throughout the experiment. Words are defined in the same way as in (B) and (C). However, here they are taken from the long (900 times 10{s}) non-repeated part of the stimulus sequence in order to obtain a large number of independent stimulus samples. Thus, stepping in 3-ms bins, \(\sim 3 \times 10^{6} \) words are sampled, and the distribution shown here describes their ranked frequencies. In these windows, by far the most likely word is 0000000000, and roughly 1500 different words are observed.

[?], but see [?].
Maximizing Information Transmission: single output

Single linear neuron with post-synaptic noise

\[v = w \cdot u + \eta \]

where \(\eta \) is an independent noise variable

\[I_m(u; v) = H(v) - H(v|u) \]

- Second term depends only on \(p(\eta) \)
- To maximize \(I_m \) need to maximize \(H(v) \); sensible constraint is that \(||w||^2 = 1 \)
- If \(u \sim N(0, Q) \) and \(\eta \sim N(0, \sigma_\eta^2) \) then \(v \sim N(0, w^TQw + \sigma_\eta^2) \)
For a Gaussian RV with variance σ^2 we have $H = \frac{1}{2} \log 2\pi e \sigma^2$. To maximize $H(v)$ we need to maximize $w^T Q w$ subject to the constraint $\|w\|^2 = 1$

Thus $w \propto e_1$ so we obtain PCA

If v is non-Gaussian then this calculation gives an upper bound on $H(v)$ (as the Gaussian distribution is the maximum entropy distribution for a given mean and covariance)
Infomax: maximize information in *multiple* outputs wrt weights \[v = Wu + \eta \]

\[
H(v) = \frac{1}{2} \log \det(\langle vv^T \rangle)
\]

Example: 2 inputs and 2 outputs. Input is correlated. \(w_{k1}^2 + w_{k2}^2 = 1 \).

At low noise independent coding, at high noise joint coding.
Estimating information

Information estimation requires a lot of data. Most statistical quantities are unbiased (mean, var,...). But both entropy and noise entropy have bias.

A NON - INFORMATIVE NEURON

B INFORMATIVE NEURON
FIG. 2. The frequency of occurrence for different words in the spike train, with $\Delta \tau = 3$ ms and $T = 30$ ms. Words are placed in order so that the histogram is monotonically decreasing; at this value of T the most likely word corresponds to no spikes. Inset shows the dependence of the entropy, computed from this histogram according to Eq. (1), on the fraction of data included in the analysis. Also plotted is a least squares fit to the form $S = S_0 + S_1/\text{size} + S_2/\text{size}^2$. The intercept S_0 is our extrapolation to the true value of the entropy with infinite data [11].

FIG. 3. The total and noise entropies per unit time are plotted versus the reciprocal of the window size, with the time resolution held fixed at $\Delta \tau = 3$ ms. Results are given both for the direct estimate and for the bounding procedure described in the text, and for each data point we apply the extrapolation procedures of Fig. 2 (inset). Dashed lines indicate extrapolations to infinite word length, as discussed in the text, and arrows indicate upper bounds obtained by differentiating $S(T)$ [7].

Try to fit $1/N$ correction [?]
Common technique for I_m: shuffle correction [?]
See also: [?, ?]
Summary

- Information theory provides non parametric framework for coding
- Optimal coding schemes depend strongly on noise assumptions and optimization constraints
- In data analysis biases can be substantial