Outline

Evaluating Models of Natural Image Patches

Chris Williams

Neural Information Processing School of Informatics, University of Edinburgh

January 15, 2018

- Evaluating Models
- Comparing Whitening and ICA Models
- Spherically Symmetric Distribution
- Lp-spherical Distributions

1/16

Evaluating Models

The natural way to compare models is in terms of the expected log likelihood

$$\mathcal{L} = \mathbb{E}[\log p(\mathbf{u}|M)]$$

 $\simeq \frac{1}{n} \sum_{i=1}^{n} \log p(\mathbf{u}_i|M)$

- *KL*(*p*_{true}||*p*_M) argument shows that log likelihood is highest for correct generative model
- Avoid overfitting issues by using a separate test set to evaluate the expectation
- Eichhorn, Sinz and Bethge (2009) compute the Average Log Loss

$$ALL = \frac{1}{D}\mathbb{E}[-\log p(\mathbf{u}|M)]$$

where *D* is the number of (colour) pixels in the patch. Units: bits/component

Comparing Whitening and ICA Models

Eichhorn, Sinz and Bethge (2009)

- Recall that ICA basis can be thought of as first whitening, then a rotation in the whitened space
- Compare 4 bases: RND (random in the whitened space), SYM (=ZCA basis), PCA and ICA
- Model for $\mathbf{v} = W\mathbf{u}$ is factorized, they fit a generalized Gaussian to each of the marginals v_i , $i = 1 \dots, D$

A = RND, B = PCA, C = ICA basis

- DCS = separation of DC component
- Notice the small differences between RND, SYM, PCA and ICA
- Spherically symmetric distribution (SSD) is much better, at 1.67 bits/component (cf 1.78 for ICA)

Figure credit: Matthias Bethge

- The SSD model is a better model for image patches than ICA
- However, as it is radially symmetric, it does not prefer the ICA basis over RND, PCA etc. So there seems to be no reason why there should be Gabor-style filters ...
- Radial Gaussianization (RG) has a similar effect to contrast gain control (or divisive normalization, DN)

$$g(r) = rac{r}{\sqrt{b+cr^2}}$$

Results in Lyu & Simoncelli (2008) show that RG is superior to DN for image patch modelling

Spherically Symmetric Distribution

$$p(\mathbf{u}) \propto f(\mathbf{u}^T \Sigma^{-1} \mathbf{u})$$

- In general the density has elliptical contours
- If $f(z) = \exp(-z)$ then this is a Gaussian
- Model applies more generally, e.g. multivariate Student-t (heavy tails).
- Whitening transformation $\mathbf{v} = W\mathbf{u}$
- Spherical model is a function of $|\mathbf{v}|^2$ s.t. $\Sigma^{-1} = W^T W$
- Method is called *radial Gaussianization* (Lyu & Simoncelli, 2008; Sinz & Bethge, 2008); we first transform with W to get a spherical model, then perform a nonlinear transformation in r = |v|
- Can also approximate this e.g. with a mixture of several Gaussians with same (zero) mean but different scaling of the covariance.

Figure 3: Radial gaussianization procedure, illustrated for two-dimensional variables. Joint densities of (a) a spherical gaussian and (b) a nongaussian SSD (multivariate Student's t). Plotted levels are chosen such that a spherical gaussian has equal-spaced contours. (b, f) Radial marginal densities of the joint gaussian and SSD densities in *a*,*e*, respectively. Shaded regions correspond to shaded annuli. (c) Radial map of the RG transform. (d) Log marginal densities of the joint gaussian (dashed line) and SSD (solid line) densities.

Figure credit: [Lyu and Simoncelli 2009]

5/16

Lp-spherical Distributions

- Consider L_p spherical distributions, $p(\mathbf{u}) = p(||W\mathbf{u}||_p)$
- ► L_p norm

$$||\mathbf{x}||_{p} = (\sum_{i=1}^{D} |x_{i}|^{p})^{1/p}$$

strictly only a norm for $p \ge 1$

Results for Lp-spherical Distributions

Journal of Multivariate Analysis, 100(5): 817-820, 2009.

Slide credit: Matthias Bethge

10/16

Sinz and Bethge (2008)

- HAD basis = Hadamard (similar to RND)
- For p = 2 all models are invariant to a rotation of basis
- Focus on the lower lines (top ones are for a *p*-generalized Normal distribution)
- Results show that lower ALL can be obtained for p < 2</p>

- Gabor-type filters (ICA basis) are superior to SYM and HAD bases
- However, this effect is weak: the contribution relative to cHAD is less than 2% in redundancy reduction
- Sinz and Bethge's conclusion: "orientation selectivity is not crucial for redundancy reduction, while contrast gain control may play a more important rôle

bandpass filtering selectivity compared poling bandpass filtering selectivity complex cell poling representative complex cell poling references												
Linear models	PCA/ Whitening		~					Pentland (1984), Srinivasan et al (1982), Field (1987), Atick (1990), Ruderman & Bialek (1994),				
	ICA	\blacklozenge	>	>				Olshausen & Field (1996) Bell & Sejnowski (1997)				
u-spherical models	L ₂ -spherical model	•	~		~			Zetzsche et al (1999), Schwarz & Simoncelli (2001), Lyu & Simoncelli (2008) Sinz & Bethge (2008)				
	L_p -spherical model	\Leftrightarrow	>	>	~			Köster & Hyvarinen (2007) Sinz & Bethge (2009)				
	L_p -nested model		>	>	>	>	(∕∕)	Sinz et al (2010) Sinz & Bethge (in press)				
	Multilayer ICA	+:+	~	~			~	Chen & Gopinath (2000) Hosseini and Bethge (2009)				
	Deep Belief Nets (DBN)		~	~			~	Hinton et al (2006)				
	Mixture of GSMs		√	~	~	~		Lee & Lewicki (2002), Karklin & Lewicki (2003+5+8), Bethge & Hosseini (2007)				

bandpass filtering selectivity references												
Linear models	PCA/ Whitening		~					Bethge, JOSA A, 2006 Eichhorn, Sinz, Bethge, PLOS CB, 2009	2,7			
	ICA	\blacklozenge	~	~				Bethge, JOSA A, 2006 Eichhorn, Sinz, Bethge, PLOS CB, 2009	2,92			
u-spherical models	L_2 -spherical model	•	~		~			Eichhorn, Sinz, Bethge, PLOS CB, 2009 Lyu&Simoncelli, NIPS 2008 Sinz&Bethge, NIPS, 2008	3,05			
	L_p -spherical model	\Leftrightarrow	>	~	>			Sinz&Bethge, NIPS, 2009	3,17			
	L_p -nested model		~	~	~	~	(∕)	Sinz et al, NIPS, 2010	3,2			
	Multilayer ICA	+:+	~	~			~	Hosseini et al, 2009	3,0			
	Deep Belief Nets (DBN)		~	~			~	Theis, Bachelor thesis, 2010	2,9			
	Mixture of GSMs	${\not \!$	~	~	~	~		Hosseini et al, patent (pending) 2007	3,3			

Slide credit: Matthias Bethge

References

- Note the technical difficulty in evaluating the ALL for some models (e.g. Karklin and Lewicki, ISA, DBN etc)
- The Bethge and Hosseini reference is a patent (WO/2009/146933, published 10.12.2009)
- Basically a mixture of GSMs. It works by
 - assigning an image patch to a specific class
 - transforming the image patch, with a pre-determined class-specific transformation function
 - coding and quantizing the transformed coefficients
- Mixture of GSMs can be seen as an overcomplete model

- M. Bethge and R. Hosseini Patent (WO/2009/146933, published 10.12.2009) Method and Device for Image Compression
- J. Eichhorn, F. Sinz and M. Bethge. Natural Image Coding in V1: How Much Use Is Orientation Selectivity? PLoS Computational Biology 5(4) e1000336 (2009)
- S. Lyu and E. Simoncelli. Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization. Neural Computation 21 1485-1519 (2008)
- F. Sinz and M. Bethge. The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction. NIPS*2008 (2008)

Slide credit: Matthias Bethoe