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Overview

Understanding the neural code

Encoding: Prediction of neural response to a given stimulus
Decoding (homunculus):

Given response, what was the stimulus?
Given firing pattern, what will be the motor output? (Important for
prosthesis)

Measuring information rates
Books:
[Rieke et al., 1996] (a very good book on these issues),
[Dayan and Abbott, 2002] (chapters 2 and 3) [Schetzen, 2006],
[Schetzen, 1981] (review paper on method)
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The neural code

Understanding the neural code is like building a dictionary.
Translate from outside world (sensory stimulus or motor action) to
internal neural representation
Translate from neural representation to outside world
Like in real dictionaries, there are both one-to-many and
many-to-one entries in the dictionary (think of examples)
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Encoding: Stimulus-response relation

Predict response r to stimulus s. Black box approach.
This is a supervised learning problem, but:

Stimulus s can be synaptic input or sensory stimulus.
Responses are noisy and unreliable: Use probabilities.
Typically many input (and sometimes output) dimensions
Reponses are non-linear1

Assume non-linearity is weak. Make series expansion?
Or, impose a parametric non-linear model with few parameters

Need to assume causality and stationarity (system remains the
same). This excludes adaptation!

1Linear means: r(αs1 + βs2) = αr(s1) + βr(s2) for all α, β.
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Response: Spikes and rates

Response consists of spikes. Spikes are (largely) stochastic. Compute
rates by trial-to-trial average and hope that system is stationary and
noise is really noise.

Initially, we try to predict r , rather than predict the spikes. (Note, there
are methods to estimate most accurate histogram from data).
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Paradigm: Early Visual Pathways

[Figure: Dayan and Abbott, 2001, after Nicholls et al, 1992]
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Retinal/LGN cell response types

On-centre off-surround Off-centre on-surround

Also colour opponent cells
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V1 cell response types (Hubel & Wiesel)

Odd Even

Simple cells, modelled by Gabor functions
Also complex cells, and spatio-temporal receptive fields
Higher areas
Other pathways (e.g. auditory)
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Not all cells are so simple...

The methods work well under limited conditions and for early sensory
systems. But intermediate sensory areas (eg. IT) do things like face
recognition. Very non-linear; hard with these methods.

9 / 58

Not all cells are so simple...

In even higher areas the receptive field (RF) is not purely sensory.
Example: pre-frontal cells that are task dependent [Wallis et al., 2001]
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Overview

Volterra and Wiener expansions
Spike-triggered average & covariance
Linear-nonlinear-Poisson (LNP) models
Integrate & fire and Generalized Linear models
Networks
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Simple example

A thermometer: temperature T gives response r = g(T ),
r measures cm mercury

g(T ) is monotonic, g−1(r) probably exists
Could be somewhat non-linear
Could in principle be noisy.
Will not indicate instantaneous T , but its recent history.
For example r(t) = g

(∫
dt ′T (t ′)k(t − t ′)

)

k is called a (filter) kernel. The argument of g() is a convolution
T ? k ≡

∫
dt ′T (t ′)k(t − t ′)

Note, if k(t) = δ(t) then r(t) = g(T (t))
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Volterra Kernels

Inspiration from Taylor expansion:
r(s) = r(0) + r ′(0)s + 1

2 r ′′(0)s2 + . . . = r0 + r1s + 1
2 r2s2 + . . .

But include temporal response (Taylor series with memory)

r(t) = h0

+

∫ ∞

0
dτ1h1(τ1)s(t − τ1)

+

∫ ∞

0

∫ ∞

0
dτ1dτ2 h2(τ1, τ2)s(t − τ1)s(t − τ2)

+ . . . h3(τ1, τ2, τ3) . . .

Note, h2(τ1, τ2) = h2(τ2, τ1)
Hope that

limτi→∞ hk (τj) = 0
hk is smooth,
hk small for large k .
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Noise and power spectra

At each timestep draw an independent sample from a zero-mean
Gaussian
〈s(t1)〉 = 0, 〈s(t1) . . . s(t2k+1)〉 = 0
〈s(t1)s(t2)〉 = C(t1 − t2) = σ2δ(t1 − t2),
〈s(t1)s(t2)s(t3)s(t4)〉 =
σ4[δ(t1 − t2)δ(t3 − t4) + δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)]

The noise is called white because in the Fourier domain all
frequencies are equally strong.
The powerspectrum of the signal and the autocorrelation are
directly related via Wiener-Kinchin theorem.

S(f ) = 4
∫ ∞

0
C(τ) cos(2πf τ)
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Wiener Kernels

Wiener kernels are a rearrangement of the Volterra expansion, used
when s(t) is Gaussian white noise with 〈s(t1)s(t2)〉 = σ2δ(t1 − t2)
0th and 1st order Wiener kernels are identical to Volterra

r(t) = g0

+

∫ ∞

0
dτ1g1(τ1)s(t − τ1)

+

[∫ ∞

0

∫ ∞

0
dτ1dτ2g2(τ1, τ2)s(t − τ1)s(t − τ2)

−σ2
∫ ∞

0
dτ1g2(τ1, τ1)

]
+ . . . (1)
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Estimating Wiener Kernels

To find kernels, stimulate with Gaussian white noise

g0 = 〈r〉

g1(τ) =
1
σ2 〈r(t)s(t − τ)〉 (correlation)

g2(τ1, τ2) =
1

2σ4 〈r(t)s(t − τ1)s(t − τ2)〉 (τ1 6= τ2)

In Wiener, but not Volterra, expansion successive terms are
independent. Including a quadratic term won’t affect the
estimation of the linear term, etc.
Technical point [Schetzen, 1981] : Lower terms do enter in higher
order correlations, e.g.
〈r(t)s(t − τ1)s(t − τ2)〉 = 2σ4g2(τ1, τ2) + σ2g0δ(τ1 − τ2)

The predicted rate is given by Eq.(1).
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Remarks

The predicted rate can be <0.
In biology, unlike physics, there is no obvious small parameter that
justifies neglecting higher orders. Check the accuracy of the
approximation post hoc.

Averaging and ergodicity
〈x〉 formally means an average over many realizations over the
random variables of the system (both stimuli and internal state).
This definition is good to remember when conceptual problems
occur.
An ergodic system visits all realizations if one waits long enough.
That means one can measure from a system repeatedly and get
the true average.
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Wiener Kernels in Discrete Time

Model:

r(n∆t) = g0 +
L−1∑

i=0

g1is((n − i)∆t) + . . .

In discrete time this is just linear/polynomial regression
Solve e.g. to minimize squared error, E = (r− Sg)T(r− Sg).
E.g. L = 3, g = (g0,g10,g11,g12)T and r = (r1, r2, . . . , rn)T

S =




1 s1 s0 s−1
1 s2 s1 s0
...

...
1 sn sn−1 sn−2




S is a n × (1 + L) matrix (’design matrix’)
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The least-squares solution ĝ for any stimulus (differentiate E wrt.
g):

ĝ = (ST S)−1ST r

Note that on average for Gaussian noise
〈ST S〉ij = nδij(σ

2 + (1− σ2)δi1)

After substitution we obtain

ĝ0 =
1
n

n∑

i=1

ri = 〈r〉

ĝ1j =
1
σ2

1
n

n∑

i=1

si−j ri =
1
σ2 corr(s, r)

Note parallel with continuous time equations.
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Linear case: Fourier domain

Convolution becomes simple multiplication in Fourier domain
Assume the neuron is purely linear (gj = 0, j > 1 ),
otherwise Fourier representation is not helpful

r(t) = r0 + s ∗ g1

〈s(t)r(t + τ)〉 = 〈sr0〉+ 〈s(t)g1 ∗ s〉
Now g1(ω) = 〈rs〉(ω)

〈ss〉(ω)

For Gaussian white noise 〈ss〉(ω) = σ2 (note, that 〈s〉 = 0)

So g1(ω) = 1
σ2 〈rs〉(ω)

g1 can be interpreted as impedance of the system
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Regularization
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Figure: Over-fitting: Left: The stars are the data points. Although the dashed
line might fit the data better, it is over-fitted. It is likely to perform worse on
new data. Instead the solid line appears a more reasonable model. Right:
When you over-fit, the error on the training data decreases, but the error on
new data increases. Ideally both errors are minimal.
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Regularization
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Fits with many parameters typically require regularization to
prevent over-fitting
Regularization: punish fluctuations (smooth prior)
Non-white stimulus, Fourier: g1(ω) = 〈rs〉(ω)

〈ss〉(ω)+λ (prevent division by
zero as ω →∞)
In time-domain: ĝ = (ST S + λI)−1ST r
Set λ by hand
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Spatio-temporal kernels

[Dayan and Abbott, 2002]

Kernel can also be in spatio-temporal domain.
This V1 kernel does not respond to static stimulus,
but will respond to a moving grating
([Dayan and Abbott, 2002]§2.4 for more motion detectors)
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Higher-order kernels

Including higher orders leads to more accurate estimates.

Chinchilla auditory system [Temchin et al., 2005]
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Wiener Kernels for spiking neurons:
Spike triggered average (STA)

Spike times ti , r(t) =
∑
δ(t − ti)

g1(τ) = 1
σ2 〈r(t)s(t − τ)〉 = 1

σ2

∑
ti s(ti − τ)

For linear systems the most effective stimulus of a given power
(
∫

dt s(t)2 = c) is sopt (t) ∝ g1(−t)
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Wiener Kernels for spiking neurons

Application on H1 neuron [Rieke et al., 1996]. Prediction (solid), and
actual firing rate (dashed). Prediction captures the slow modulations,
but not faster structure. This is often the case.
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Wiener Kernels: Membrane potential vs spikes

Not much difference; spike triggered is sharper (transient detector).
Retinal ganglion cell [Sakai, 1992]
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Spike triggered covariance STC

r(t) = p(spike|s) = g0 + gT
1 s + sT G2s + . . .

Stimulate with white noise to get spike-triggered covariance G2
(STC)
G2(τ1, τ2) ∝∑ti s(ti − τ1)s(ti − τ2)

G2 is a symmetric matrix, so its eigenvectors ei form an
orthogonal basis, G2 =

∑N
i=1 λieieT

i .
r(t) = g0 + gT

1 s +
∑N

i=1 λi(sT ei)
2 + . . .

To simplify, look for largest eigenvalues of G2, as they will explain
the largest fraction of variance in r(t) (cf PCA).
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Red dots indicate spikes,
x-axis luminance of bar
1, y-axis luminance of
bar 2.

For complex cells g1 = 0 (XOR in disguise).
First non-zero term is G2.
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STC

Complex cell [Touryan et al., 2005]
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STC

[Schwartz et al., 2001]
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STC

Also lowest variance eigenvalues might be indicative, namely of
suppression

[Schwartz et al., 2001] (simulated neuron)
See [Chen et al., 2007] for real data.
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LNP models

An alternative to including higher and higher orders, is to impose a
linear-nonlinear-Poisson (LNP) model.

[Pillow et al., 2005]

r(t) = n(
∫

dt ′s(t ′)k(t − t ′) )

Linear: spatial and temporal filter kernel k
Non-linear function giving output spike probability:
halfwave rectification, saturation, ...
Poisson spikes pspike(t) = λ(t) (quite noisy)
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Data on Poisson variability

To test for Poisson with varying rate (inhomogeneous Poisson
process), measure variance across trials.

V1 monkey [Bair, 1999]
Fly motion cell
[de Ruyter van Steveninck et al., 1997]
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Estimation of LNP models

[Chichilnisky, 2001]:

If n() were linear, we would just use STA
It turns out we can still use the STA if p(s) is radially symmetric,
e.g. Gaussian
Let ft denote the firing probability at time t given stimulus st . Do
STA:

k̃ =

∑T
t=1 st ft∑T

t=1 ft
=

1
T
∑T

t=1 st ft
1
T
∑T

t=1 ft

=
1
〈f 〉
∑

s

sp(s)n(k · s)
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For every s there is a s∗ of
equal probability with a location
symmetric about k. s

s

*

k

k̃ =
1

2〈f 〉
∑

s, s∗
[sp(s)n(k · s) + s∗p(s∗)n(k · s∗)]

=
1

2〈f 〉
∑

s, s∗
(s + s∗)n(k · s)p(s)

use that, k · s = k · s∗, and s + s∗ ∝ k. Hence

k̃ ∝ k

36 / 58



Continuous case: Bussgang’s Theorem

[Bussgang, 1952; Dayan and Abbott (2002) p 83-84]
s ∼ N(0, σ2I)

k̃i =
1
σ2

∫
ds p(s)sin(k.s)

=
1
σ2

∏

j 6=i

∫
dsjP(sj)

∫
dsi

si√
2πσ2

e−s2
i /2σ2

n(k.s)

=
∏

j 6=i

∫
dsjP(sj)

∫ ∞

−∞
dsi

1√
2πσ2

e−s2
i /2σ2 d

dsi
n(k.s)

= ki

∫
ds p(s)n′(k.s) = const ki

’const’ same for all i , so k̃ ∝ k
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Estimation of LNP models

It is easy to estimate n() once k is known
Unlike linear case, STA does not minimize error anymore
Can extend analysis from circularly to elliptically symmetric p(s)
[Paninski]
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LNP results

[Chichilnisky, 2001]
Colors are the kernels for the different RGB channels
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LNP results

Good fit on coarse time-scale [Chichilnisky, 2001], but spike times are
off(below).
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Generalized LNP models

Above LNP model is for linear cell, e.g. for a simple cell
For a complex cell, use two filters with squaring non-linearities,
and add these before generating spikes
In general (c.f. additive models in statistics)

r(t) = n(
∑

i

f (ki · s))
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Integrate and fire model

[Pillow et al., 2005]

Parameters are the k and h kernels
h can include reset and refractoriness
For standard I&F: h(t) = 1

R (VT − Vreset )δ(t) .
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[Pillow et al., 2005] Fig 2
43 / 58

[Pillow et al., 2005] Fig 3
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Precision

(Thick line in bottom graph: firing rate without refractoriness).
[Berry and Meister, 1998].
The reset after a spike reduces the rate and increase the precision of
single spikes.
This substantially increases coded information per spike
[Butts et al., 2007].
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I&F: focus on spike generation

Stimulate neuron and model as:

C
dV (t)

dt
= Im(V , t) + Inoise + Iin(t) (2)

Measure Im using that

Im(V , t) + Inoise = −Iin(t) + C
dV (t)

dt
(3)

Note, for linear I&F: Im(V , t) = 1
R (Vrest − V )

But, more realistically:
- non-linearities from spike generation (Na & K channels)
- after-spike changes (adaptation)
Used in a competition to predict spikes generated with current injection
( easier than a sensory stimulus).
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[Badel et al., 2008]
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Generalized linear models

[Gerstner et al., 2014](Ch.10)
Least square fit: y = a.x, Gaussian variables.
IF (and LNP) fitting can be cast in GLMs, a commonly used
statistical model y = f (a.x)

Note that f () is a probability, hence not Gaussian distributed.
Spike probability at any time is given by ’hazard function’ f (Vm)
which includes spike feedback
f (Vm(t)) = f [(k ∗ s)(t) +

∑
i h(t − ti)].

Can also include terms proportional to sk . It is the linearity in the
parameters that matters.
(cf polynomial fitting, y =

∑K
k=0 akxk )
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Generalized linear models

Log likelihood for small bins (ti : observed spikes)

logL = log
∏

t

Pspiketrain(t)

=
∑

ti

log f (Vm(ti)) +
∑

t 6=ti

log[1− f (Vm(t))dt ]

=
∑

ti

log f (Vm(ti))−
∫

f (Vm(t))dt

When f is convex and log(f ) is concave in parameters, e.g.
f (x) = [x ]+, or f (x) = exp(x) then logL is concave, hence global
max (easy fit).
Regularization is typically required.
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Generalized linear models

Can also capture bursting neurons (blue: input filter, red: feedback
filter).

But generalization can fail badly (green):

From [Weber and Pillow, 2017].
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Even more complicated models

A retina + ganglion cell model with multiple adaptation stages
[van Hateren et al., 2002]

But how to fit?...
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Network models

Generalization to networks.
Unlikely to have data from all
neurons
Predict of cross-neuron spike
patterns and correlations
Correlations are important for
decoding (coming lectures)
Estimate ’functional coupling’,
O(N × N) parameters
Uses small set of basis functions
for kernels [Pillow et al., 2008]
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Network models

Note uncoupled case still correlations due to RF overlap, but less
sharp. [Pillow et al., 2008]

53 / 58

Summary

Predicting neural responses
In order of decreasing generality

Wiener kernels: systematic, but require a lot of data for higher
orders
Spike-triggered models: simple, but still leads to negative rates.
LNP model: fewer parameters, spiking output, but no timing
precision
More neurally inspired models (I&F, GLM with spike feedback):
good spike timing, but require regularization
Biophyical models: in principle very precise, but in practice
unwieldy
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