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Why decoding?

Understanding the neural code.
Given spikes, what was the stimulus?
What aspects of the stimulus does the system encode? (capacity
is limited)
What information can be extracted from spike trains:

By “downstream” areas? Homunculus.
By the experimenter? Ideal observer analysis.

What is the coding quality?
Design of neural prosthetic devices

Related to encoding, but encoding does not answer above questions
explicitly.
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Decoding examples

Hippocampal place cells: how is location encoded?
Retinal ganglion cells: what information is sent to the brain? What
is discarded?
Motor cortex: how can we extract as much information as possible
from a collection of M1 cells?
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Overview

1 Stimulus reconstruction (single spiking neuron, dynamic stimuli)
2 Spike train discrination (spike based)
3 Stimulus discrimination (single neuron, rate based, static stimulus

s = {sa, sb})
4 Population decoding (multiple neurons, rate based, static stimulus

s ∈ R)
5 Dynamic population decoding (s(t) ∈ R)
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1. Spike train decoding

Dayan and Abbott §3.4, Rieke Chap 2 and Appendix
Estimate the stimulus from spike times ti to minimize e.g.
〈s(t)− sest(t)〉2
First order reconstruction:

sest(t − τ0) =
∑

ti

K (t − ti)− 〈r〉
∫

dτK (τ)

The second term ensures that 〈sest(t)〉 = 0
Delay τ0 can be included to make decoding easier: predict
stimulus at time t − τ0 based on spikes up to time t (see causal
decoding below)
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Acausal Minimization

Let r(t) =
∑
δ(t − ti)

Mimimizing squared error (similar to Wiener kernels) gives implicit
equation for optimal K

∫ ∞

−∞
dτ ′Qrr (τ − τ ′)K (τ ′) = Qrs(τ − τ0)

where

Qrr (τ − τ ′) =
1
T

∫ T

0
dt〈(r(t − τ)− 〈r〉)(r(t − τ ′)− 〈r〉)〉

Qrs(τ − τ0) = 〈r〉C(τ0 − τ)

where C(τ) = 〈1
n
∑

i s(ti − τ)〉 is STA from encoding slides.
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Or use Fourier space

K̃ (ω) =
Q̃rs(ω) exp(iωτ0)

Q̃rr (ω)

Note, one can design the stimulus (e.g. Gaussian white noise),
but one can not design the response r(t).
If Qrr (τ) ≈ 〈r〉δ(τ) (tends to happen at low rates, hence not very
relevant) then K is the STA, so decoder equals encoder

K (τ) =
1
〈n〉

〈
n∑

i=1

s(ti + τ − τ0)

〉

Note, for constant Poisson process Qrr (τ) ≈ 〈r〉δ(τ)
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Quality of reconstruction

[Gabbiani and Koch, 1998][non-causal kernel]

Define reconstruction quality as : γ = 1− [〈(sest−s)2〉]1/2

σs
.

An I&F transmits more information than Poisson (cf. encoding).
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H1 neuron of
the fly
Solid line is
reconstruction
using acausal
filter
Note,
reconstruction
quality will
depend on
stimulus

[Dayan and Abbott (2001) after Rieke et al (1997)]
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Causal decoding

Organism faces causal (on-line) decoding problem.
Prediction of the current/future stimulus requires temporal
correlation of the stimulus. Example: in head-direction system
neural code correlates best with future direction.
Requires K (t − ti) = 0 for t ≤ ti .

sest(t − τ0) =
∑

ti

K (t − ti)− 〈r〉
∫

dτK (τ)

Delay τ0 buys extra time
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Causal decoding

Delay τ0 = 160 ms. (C: full (non-causal) kernel) [Dayan and Abbott (2001)]

At time t estimate s(t − τ0):
Spikes 1..4: contribute because stimulus is correlated (right tail of K)
Spikes 5..7: contribute because of τ0
Spikes 8, 9,... : have not occurred yet.

11 / 63

Causality

Finding optimal kernel while imposing causality analytically is harder.
Hope that K (τ) = 0 for τ < 0 and τ0 sufficiently large.
Wiener-Hopf method (spectral factorization)
Expand K (τ) using a causal basis
Use discrete formulation
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Higher order reconstruction

Build a library of spike patterns (up to triplets). Measure mean and
covariance of P(s|{t0, t1, ..}). Reconstruct with weighted sum of
means, §A6 [Rieke et al., 1996]

13 / 63

Conclusion stimulus reconstruction

Stimulus reconstruction similar to encoding problem. But
Response is given, can not be choosen to be white
Imposing causality adds realism but reduces quality

The reconstruction problem can be ill-posed. It is not always
possible to reconstruct stimulus (cf dictionary). For instance:
complex cell.
Still, the cell provides information about the stimulus. Could try to
read the code, rather than reconstruct the stimulus (e.g. ideal
observer)
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2. Spike train discrimination

Given two spike trains. How similar are they, or how they compare to
template?
Problem: very high dimensional space.

Cricket auditory neuron in response to 2 songs, 5 repeats/song
[Machens et al., 2003]
’Edit distance’: two processes [Victor and Purpura, 1997]

Deleting/inserting a spike costs 1
Moving a spike costs 1

2 [1− exp(−|δt |/τ)], with parameter τ .
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Spike distances

Simpler algorithm:
Convolve (filter) with a exponential f̃ (t) =

∑
ti<t exp(−(t − ti)/tc)

and calculate L2 distance

D2 =
1
tc

∫ T

0
dt [f̃ (t)− g̃(t)]2

Similar to coherence of between trains [van Rossum, 2001]
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Application to cricket auditory neurons: Play songs repeatedly and
discriminate [Machens et al., 2003]

Optimal discrimination when τ similar to neural integration time
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Spike distances

Using spike distance to measure intrinsic noise:
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3. Stimulus Discrimination

Dayan and Abbott §3.2
p(s|r), where r is response across neurons and/or time
In general s can be continuous, e.g. speed
First, discrimination i.e. distinguishing between two (or more)
alternatives (e.g. stimulus or no stimulus)
For now no time-dependent problems.
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SNR and ROC curves

Discriminate between response distributions P(r1) and P(r2).
ROC: vary decision threshold and measure error rates.
Larger area under curve means better discriminability
Shape relates to underlying distributions.

For Gaussian distributed responses define single number

SNR = 2
[〈r1〉 − 〈r2〉]2

var(r1) + var(r2)

Note, SNR = 2 |〈r1〉−〈r2〉|
sd(r1)+sd(r2)

is also used, neither is principled when
var(r1) 6= var(r2).
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Readout of a single MT neuron

[Britten et al., 1992]

Some single neurons do as well as animal!
Possibility for averaging might be limited due to correlation?
Population might still be faster [Cohen and Newsome, 2009]
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Readout of Object Identity from Macaque IT Cortex

[Hung et al., 2005]
Recording from ∼ 300 sites in the Inferior Temporal (IT) cortex
Present images of 77 stimuli (of different objects) at various
locations and scales in the visual field.
Task is to categorize objects into 8 classes, or identify all 77
objects
Predictions based on one-vs-rest linear SVM classifiers, using
data in 50 ms bins from 100 ms to 300 ms after stimulus onset
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[Hung et al., 2005]
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What does this tell us?

Performance of such classifiers provides a lower bound on the
information available in the population activity
If neurons were measured independently (paper is unclear),
correlations are ignored. Correlation could limit or enhance
information...
Distributed representation
Linear classifier can plausibly be implemented in neural hardware
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Visual system decoding: independence

[Abbott et al., 1996] Face cells, rate integrated over 500ms,
extrapolated to large #stimuli. Extract face identity from population
response.

Coding is almost independent! (for these small ensembles)
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4. Population Encoding

Dayan and Abbott §3.3
Population encoding uses a large number of neurons to represent
information
Advantage 1: reduction of uncertainty due to neuronal variability
(Improves reaction time).
Advantage 2: Ability to represent a number of different stimulus
attributes simultaneously (e.g. in V1 location and orientation).
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Cricket Cercal System

[Dayan and Abbott (2001) after Theunissen and Miller (1991)]

At low velocities, information about wind direction is encoded by just
four interneurons (

f (s)
rmax

)
= [cos(s − sa)]+

Note, rate coding assumed.
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Let ca denote a unit vector in the direction of sa, and v be a unit
vector parallel to the wind velocity

(
f (s)
rmax

)
= [v · ca]+

Crickets are Cartesian, 4 directions 45◦, 135◦, −135◦, −45◦

Population vector is defined as

vpop =
4∑

a=1

(
r

rmax

)

a
ca
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Vector method of decoding

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]
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Primary Motor Cortex (M1)

Certain neurons in M1 of the monkey can be described by cosine
functions of arm movement direction (Georgopoulos et al, 1982)
Similar to cricket cercal system, but note:

Non-zero offset rates r0

(
f (s)− r0

rmax

)
= v · ca

Non-orthogonal: there are many thousands of M1 neurons that
have arm-movement-related tuning curves
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[Dayan and Abbott (2001) after Kandel et al (1991)]
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Optimal Decoding

Calculate
p(s|r) = p(r|s)p(s)

p(r)

Maximum likelihood decoding (ML): ŝ = argmaxs p(r|s)
Maximum a posteriori (MAP): ŝ = argmaxs p(s)p(r|s)
Bayes: mimimize loss

sB = argmins∗

∫

s
L(s, s∗)p(s|r)ds

For squared loss L(s, s∗) = (s − s∗)2, optimal s∗ is posterior
mean, sB =

∫
s p(s|r)s.
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Optimal Decoding for the cricket

For the cercal system, assuming indep. noise

p(r|s) =
∏

a

p(ra|s)

where each p(ra|s) is modelled as a Gaussian with means and
variances
p(s) is uniform (hence MAP=ML)
ML decoding finds a peak of the likelihood
Bayesian method finds posterior mean
These methods improve performance over the vector method (but
not that much, due to orthogonality...)
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Cricket Cercal System

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]
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General Consideration of Population Decoding

[Dayan and Abbott (2001)]
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Poisson firing model over time T , count na = raT spikes.

p(r|s) =
N∏

a=1

(fa(s)T )na

na!
exp(−fa(s)T )

log p(r|s) =
N∑

a=1

na log fa(s) + . . .

Approximating that
∑

a fa(s) is independent of s
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ML decoding

sML is stimulus that maximizes log p(r|s), determined by

N∑

a=1

ra
f ′a(sML)

fa(sML)
= 0

If all tuning curves are Gaussian fa = A exp[−(s − sa)
2/2σ2

w ] then

sML =

∑
a rasa∑

a ra

which is simple and intuitive, known as Center of Mass (cf
population vector)
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Accuracy of the estimator

Bias and variance of an estimator sest

best(s) = 〈sest〉 − s
σ2

est(s) = 〈(sest − 〈sest〉)2〉
〈(s − sest)

2〉 = b2
est(s) + σ2

est

Thus for an unbiased estimator, MSE 〈(s − sest)
2〉 is given by σ2

est ,
the variance of the estimator
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Fisher information

Fisher information is a measure of the curvature of the log
likelihood near its peak

IF (s) =
〈
−∂

2 log p(r|s)
∂s2

〉

s
= −

∫
drp(r|s)∂

2 log p(r|s)
∂s2

(the average is over trials measuring r while s is fixed)
Cramér-Rao bound says that for any estimator
[Cover and Thomas, 1991]

σ2
est ≥

(1 + b′est(s))
2

IF (s)

efficient estimator if σ2
est =

(1+b′est (s))
2

IF (s)
.

In the bias-free case an efficient estimator σ2
est = 1/IF (s).

ML decoder is typically efficient when N →∞.
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Fisher information

In homogeneous systems IF indep. of s.

More generally Fisher matrix (IF )ij(s) =
〈
−∂2 log p(r|s)

∂si∂sj

〉
s
.

Taylor expansion of Kullback-Leibler
DKL(P(s),P(s + δs)) ≈∑ij δsiδsj(IF )ij

Not a Shannon information measure (not in bits), but related to
Shannon information in special cases,e.g.
[Brunel and Nadal, 1998, Yarrow et al., 2012].
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Fisher information for a population

For independent Poisson spikers

IF (s) =
〈
−∂

2 log p(r|s)
∂s2

〉
= T

∑

a

〈ra〉
((

f ′a(s)
fa(s)

)2

− f ′′a (s)
fa(s)

)

For dense, symmetric tuning curves, the second term sums to zero.
Using fa(s) = 〈ra〉 we obtain

IF (s) = T
∑

a

(f ′a(s))2

fa(s)

For dense fa(s) = Ae−(s−s0+a.ds)2/2σ2
w with density ρ = 1/ds, sum

becomes integral
IF =

√
2πTAρ/σw
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For Gaussian tuning curves

[Dayan and Abbott (2001)]

Note that Fisher information vanishes at peak as f ′a(s) = 0 there
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Slope as strategy

From paper on bat echo location [Yovel et al., 2010] )
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Population codes and noise correlations

Noise in neurons can be correlated p(r|s) 6=∏N
a=1 p(ra|s). Information

in the code can go up or down with correlations depending on details
[Oram et al., 1998, Shamir and Sompolinsky, 2004,
Averbeck et al., 2006] ...
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Population codes and correlations

Gaussian noise model, with stimulus dep. covariance Q(s):

P(r|s) = 1√
(2π)N detQ

e−[r−f(s)]T Q−1[r−f(s)]/2

then [Abbott and Dayan, 1999]

IF = f′(s)Q−1(s)f′(s) +
1
2

Tr[Q′(s)Q−1(s)Q′(s)Q−1(s)]

When Q′(s) = 0 and Qij = q(|i − j |), can use spatial Fourier
representation. IF becomes sum of signal-to-noise ratios

IF =
∑

k

|f̃ ′(k)|2
q̃(k)

Thus noise with same correlation length as f ′(s) is most harmful
[Sompolinsky et al., 2002]
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Population codes and correlations

Plots:[SNR for homo/heterogen; Fisher vs # neurons]

Heterogeneity prevents information saturation caused by
correlations[Shamir and Sompolinsky, 2006, Ecker et al., 2011]
# informative Fourier modes grows with N only when heterogen.
Yet, in expts reduced correlation is linked to improved
performance [Cohen and Newsome, 2008]
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Population codes and correlations: Retina

Fit coupled I&F-model (see encoding) to retina data

[Pillow et al., 2008]
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Population codes and correlations: Retina

[Pillow et al., 2008]
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Optimal receptive field width?

Maximize IF = T
∑

a
(f ′a(s))2

fa(s) to minimize MSE error
[Zhang and Sejnowski, 1999]

(f ′a(s))2 is large for narrow curves
IF is increased by including many neurons in the sum, but this is in
conflict with narrow tuning: trade-off
Gaussian tuning curves and replace sum with integral. D = 1:
accuracy best for infinitely narrow tuning
For D = 2 there is no effect of the width on IF .
For D > 2 IF increases as tuning curves broaden
[Brown and Bäcker, 2006].
What is D in various brain areas? (93 in IT [Lehky et al., 2014])
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Alternative view on optimal coding width

[Renart and van Rossum, 2012]
Consider transmission. Maximize Iout

F wrt connections.
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Minimal loss if output is tuned to input. I.e. RF width depends on input.

51 / 63

Hippocampal Place Cell Decoding

[Brown et al., 1998]
Encoding: place cells modelled as inhomogeneous Poisson
processes
Dynamic model: random walk
Decoding: approximate Kalman filtering
Approach here is to perform inference to invert the encoding
process
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[Brown et al., 2004]
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Example: Decoding in Hippocampus

[Zhang et al., 1998]
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Example: Motor decoding

[Shpigelman et al., 2005]

Rhesus monkey, 43 electrodes in M1
Monkey controls cursors on a screen using two manipulanda to
perform a centre-out reaching task
Predict hand velocity based on 10 time bins, each of length 100
ms in all 43 neurons.
Can use linear regression, polynomial regression, Gaussian
kernel (support vector regression), spikernel (allows time warping)
More sophisticated methods outperform linear regression, but
linear is already decent

State-of-the-art w. Kalman filters [Gilja et al., 2012]
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[Shpigelman et al., 2005]
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Summary

Reconstruction of temporal stimulus
Spike distances
Discrimination task
Population decoding: vector method and “optimal” decoding
methods
Specialist applications using domain knowledge
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