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Why decoding?

Understanding the neural code.
@ Given spikes, what was the stimulus?
@ What aspects of the stimulus does the system encode? (capacity
is limited)
@ What information can be extracted from spike trains:

e By “downstream” areas? Homunculus.
e By the experimenter? ldeal observer analysis.

@ What is the coding quality?
@ Design of neural prosthetic devices

Related to encoding, but encoding does not answer above questions
explicitly.
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Decoding examples Overview

@ Hippocampal place cells: how is location encoded?

@ Retinal ganglion cells: what information is sent to the brain? What
is discarded?

@ Motor cortex: how can we extract as much information as possible
from a collection of M1 cells?
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@ Stimulus reconstruction (single spiking neuron, dynamic stimuli)

© Spike train discrination (spike based)

© Stimulus discrimination (single neuron, rate based, static stimulus
S = {Sa, Spb})

© Population decoding (multiple neurons, rate based, static stimulus
s € R)

© Dynamic population decoding (s(t) € R)
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1. Spike train decoding

Acausal Minimization

Dayan and Abbott §3.4, Rieke Chap 2 and Appendix
Estimate the stimulus from spike times t; to minimize e.g.
(s(t) = sest(1))?

First order reconstruction:

Sest(t — 70)

ZKt—t, /dTK

The second term ensures that (Ses(f)) =0

Delay 9 can be included to make decoding easier: predict
stimulus at time t — 7y based on spikes up to time t (see causal
decoding below)

Or use Fourier space

K(w) = érs(w) exp(iwTp)

Qrr (w)

Note, one can design the stimulus (e.g. Gaussian white noise),
but one can not design the response r(t).

If Q(7) =~ (r)o(r) (tends to happen at low rates, hence not very
relevant) then K is the STA, so decoder equals encoder

K(r) = <17>< To)>

Note, for constant Poisson process Q. (1) ~ (r)d(r)

n

Zs(t,--l—T—

i=1

@ Letr(t)=> 0(t—1t)
@ Mimimizing squared error (similar to Wiener kernels) gives implicit
equation for optimal K

/_00 dr’'Qu(r — YK(7') = Qrs(7 — 10)

where
Qr(r—7) = / H(r(t—7) = (r)(r(t —7") = (r))
Qs(t—1) = (NC(1o—71)
where C(7) = (137, s(t; — 7)) is STA from encoding slides.
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Quality of reconstruction

[Gabbiani and Koch, 1998][non-causal kernel]

coding fraction

1 2 5 10 I&F
encoding noise

Figure 9.19

Fraction y of the white stimulus (10 Hz cutoff frequency) shown in figures 9.18 a nd 9.20 that can be re-
covered from single-spike trains of various neuron modcls (mean firing rate 50Hz). The bou om axis
shows the order of the threshold gamma distrib noise. These models are
identical to those of figure 9.3 (except that the refractory period has been set to zero). While a Poisson
14%), a single perfect integrate-and-fire neuron

Deflne reconstruction qualityas: vy =1 — w
An 1&F transmits more information than P0|sson (cf encoding).

I)mcodes relatively poorly the stimulus (y =

eur (
acenratn (v — SR
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Causal decoding

@ H1 neuron of g ol ¥

0 100

the fly time (ms)

® eanstraton T
using acausal I T T AT

filter amplitude (°/s)

@ Organism faces causal (on-line) decoding problem.

@ Prediction of the current/future stimulus requires temporal

: correlation of the stimulus. Example: in head-direction system
filter - neural code correlates best with future direction.

response

@ Note, o] @ Requires K(t—t) =0fort < t.
reconstruction |
quality will 3 ot ) = SO K(F— 1) — r/dK
dopend on eslt=0) = 3 K(t=8) = (1) [ oK(7)
stimulus ” '
@ Delay 7y buys extra time
] 100 200 . (ms) 300 400 500
[Dayan and Abbott (2001) after Rieke et al (1997)]
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Causal decoding Causality
A tTTg .t B
VAN
4 7.8 K
e Fnrr :
: L \V (ms) % Finding optimal kernel while imposing causality analytically is harder.
L c c @ Hope that K(7) = 0 for 7 < 0 and 7y sufficiently large.
% /\T\ @ Wiener-Hopf method (spectral factorization)
Y A . @ Expand K(7) using a causal basis
time X 200 \/ 7 (ms) 290 @ Use discrete formulation
—>
Delay 79 = 160 ms. (C: full (non-causal) kernel) [Dayan and Abbott (2001)]
At time t estimate s(t — 70):
Spikes 1..4: contribute because stimulus is correlated (right tail of K)
Spikes 5..7: contribute because of 7y
Spikes 8, 9,... : have not occurred yet.
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Conclusion stimulus reconstruction

Higher order reconstruction

Build a library of spike patterns (up to triplets). Measure mean and
covariance of P(s|{fy, t1,..}). Reconstruct with weighted sum of
means, §A6 [Rieke et al., 1996]

50

Reconstructions (dark lines) of angular velocity (thin line) using reconstruction depth
of 1,2, and 3 spike sequences (from bottom). using only single spike
sequences (bottom) capture large fluctuations in the stimulus but miss many detils.
Including sequences of two spikes (midde) improves the reconstructions, but clearly
the ions systematically some aspects of the stimulus. These

13/63

@ Stimulus reconstruction similar to encoding problem. But
e Response is given, can not be choosen to be white
e Imposing causality adds realism but reduces quality
@ The reconstruction problem can be ill-posed. It is not always
possible to reconstruct stimulus (cf dictionary). For instance:
complex cell.
Still, the cell provides information about the stimulus. Could try to
read the code, rather than reconstruct the stimulus (e.g. ideal
observer)
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Spike distances

Given two spike trains. How similar are they, or how they compare to
template?
Problem: very high dimensional space.

..... -
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WVNR W 1T RIS MRS I e
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L T T TN TR T TR trrrrnni
N T O T 1 [ T O O O N B
WO IR 00 S | 1 1 I
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ILTHTETTI VTN HHMHHH\IMHHIHI:NNHH\I: : 11
LIETE AL COOETITE QOO L EE SO T i1
I

i |
(LT T T

11
0 20 40 60 80 100

Time (ms)
Cricket auditory neuron in response to 2 songs, 5 repeats/song

[Machens et al., 2003]
"Edit distance’: two processes [Victor and Purpura, 1997]

@ Deleting/inserting a spike costs 1
@ Moving a spike costs 3[1 — exp(—|dt|/7)], with parameter .
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Simpler algorithm: _
Convolve (filter) with a exponential f(t) = >, _; exp(—(t — ;) /tc)
and calculate L, distance

r .
D? — :_C /0 dtff(1) — a(1)]2
10 f k Me'vtC \
Y o 6

2t (f-g)° |
O(; ,\ M Jk Mzhsor\k rKksoo

Similar to coherence of between trains [van Rossum, 2001]
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Application to cricket auditory neurons: Play songs repeatedly and
discriminate [Machens et al., 2003]

a Original songs
12345678 12345678 123456738

-

T =1,000 ms

Assigned songs
O~NO O WN -

T=5ms

100
80
60
40

20 Chance level

Percent correct

0
0 200 400 600 800 1000 0.1 1 10 100 1000
Spike-train length T (ms) Resolution t (ms)

Optimal discrimination when 7 similar to neural integration time
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Spike distances

Using spike distance to measure intrinsic noise:

5e+06

2

Distance
D

e I ‘
T ! T 0 0.0004
. . H i i 2
intrinsic Variance of added noise —C insic

Gadd

noise
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3. Stimulus Discrimination

@ Dayan and Abbott §3.2
@ p(slr), where r is response across neurons and/or time
@ In general s can be continuous, e.g. speed

@ First, discrimination i.e. distinguishing between two (or more)
alternatives (e.g. stimulus or no stimulus)

@ For now no time-dependent problems.
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SNR and ROC curves

Discriminate between response distributions P(ry) and P(r>).
ROC: vary decision threshold and measure error rates.
Larger area under curve means better discriminability

Shape relates to underlying dlstrlbutlons

c 1.07
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©
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o

probability of false-alarm

For Gaussian distributed responses define single number

[(r) — ()]

SNA = var(ry) + var(rz)

Note, SNR = 2% is also used, neither is principled when
var(ry) # var(r2).
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Readout of a single MT neuron Readout of Object Identity from Macaque IT Cortex

A B 1 coherence=12.8%

N - | L.&&E_E&L [Hung et al., 2005]
- /3 coherence=3.2% @ Recording from ~ 300 sites in the Inferior Temporal (IT) cortex
Vi @ Present images of 77 stimuli (of different objects) at various
"o % coherence=0.55% locations and scales in the visual field.

g . . . . . .
ﬁﬁﬁ_ﬂ @ Task is to categorize objects into 8 classes, or identify all 77
! ‘»“ coheren;\; (%) * v firin;orate ‘(‘}l—)k) 0 [Britten et al.’ 1 992] Objects
@ Some Sing|e neurons do as well as animal! @ Predictions based on one-vs-rest linear SVM classifiers, using

@ Possibility for averaging might be limited due to correlation? data in 50 ms bins from 100 ms to 300 ms after stimulus onset

@ Population might still be faster [Cohen and Newsome, 2009]
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w
=
S

‘Categorization’

'Ider\hhcalion‘\

What does this tell us?

Fig. 1. Accurate readout A

of object category and ~

identity from IT popula- Y 3

tion activity. (A) Exam- X
i 2 ::

ple of multi-unit spiking =
responses of 3 indepen- g 60 r .
gej}ltyhere;;r;‘;;s;e‘é;: 5 @ Performance of such classifiers provides a lower bound on the

ters show spikes in the
200 ms after stimulus
onset for 10 repetitions

information available in the population activity
@ If neurons were measured independently (paper is unclear),

N
=)

S0 100ms

(black bars indicate object presentation). (B) Performance of a linear classifier over the entire
object set on test data (not used for training) as a function of the number of sites for
reading out object category (red, chance = 12.5%) or identity (blue, chance = 1.3%). The

Classification performance

input from each site was the spike count in consecutive 50-ms bins from 100 to 300 ms LTI H 1 H H H
after stimulus onset (28). Sequentially recorded sites were combined by assuming independence (Supporting Online CO rre | atlons are Ig nored - Correlatlo n Cou Id | I m It Or e n h ance
Material). In this and subsequent figures, error bars show the SD for 20 random choices of the sites used for training;g D Classifier output . .
the dashed lines show chance levels, and the bars next to the dashed lines show the range of performances using the tidhfmhvbol 0, | nformat|o n...
200 ms before stimulus onset (control). (C) Categorization performance (n = 64 sites, mean + SEM) for different &' ':1
data sources used as input to the classifier: multi-unit activity (MUA) as shown in (B), single-unit activity (SUA), and 2 ¢ .- o D . . b d .
local field potentials (LFP, Supporting Online Material). (D) This confusion matrix describes the pattern of mistakes | b
made by the classifier (n = 256 sites). Each row indicates the actual category presented to the monkey (29), and ,—‘: U] LS ° IStrI Ute representatlon
each column indicates the classifier predictions (in color code). 2 . . . . .
< 0 @ Linear classifier can plausibly be implemented in neural hardware

[Hung et al., 2005]
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Visual system decoding: independence

4. Population Encoding

[Abbott et al., 1996] Face cells, rate integrated over 500ms,
extrapolated to large #stimuli. Extract face identity from population
response.

a) & 20 stimuli

> 50 stimuli

8 | —— 100 stimuli
©— 200 stimuli

—— 400 stimuli

—— 0.5 bits/cell

information
~

number of cells

Coding is almost independent! (for these small ensembles)
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Cricket Cercal System

1.07

FEN

0.5

T/ imax

0.0 T T T T T
0 90 180 270 360
S (degrees)

[Dayan and Abbott (2001) after Theunissen and Miller (1991)]
At low velocities, information about wind direction is encoded by just

four interneurons ;
S
(Q> — [cos(s — sa)]+

’hnax

Note, rate coding assumed.
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@ Dayan and Abbott §3.3

@ Population encoding uses a large number of neurons to represent
information

@ Advantage 1: reduction of uncertainty due to neuronal variability
(Improves reaction time).

@ Advantage 2: Ability to represent a number of different stimulus
attributes simultaneously (e.g. in V1 location and orientation).
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@ Let ¢, denote a unit vector in the direction of s5, and v be a unit
vector parallel to the wind velocity

(1)) v

@ Crickets are Cartesian, 4 directions 45°, 135°, —135°, —45°
@ Population vector is defined as

4
r
"lycug - :E:: (:"“":) (:E
a

If
a=1 \ max
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Primary Motor Cortex (M1)

Vector method of decoding

A B
Cy ¢ °
7 @ Certain neurons in M1 of the monkey can be described by cosine
N %’) V V V V functions of arm movement direction (Georgopoulos et al, 1982)
N\ . .
SN S 4l @ Similar to cricket cercal system, but note:
g )\ S e Non-zero offset rates ry
r d o 2
2 Ve I f(s) — r
/ <(S)O> =V-Cjy
/ rmax
0 2 L L
- > -180 -0 0 90 180 .
Cs3 Cr wind direction (degrees) e Non-orthogonal: there are many thousands of M1 neurons that

have arm-movement-related tuning curves

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]

Optimal Decoding
Calculate D(r[S)p(S)
p(S|r) - p(r)

@ Maximum likelihood decoding (ML): § = argmaxg p(r|s)
@ Maximum a posteriori (MAP): § = argmaxg p(s)p(r|s)
@ Bayes: mimimize loss

Sp = argming. /L(S, sx)p(s|r)ds
S

@ For squared loss L(s, s*) = (s — s*)?, optimal s* is posterior
mean, sg = [, p(s|r)s.

[Dayan and Abbott (2001) after Kandel et al (1991)]
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Optimal Decoding for the cricket

@ For the cercal system, assuming indep. noise

p(rls) = [ p(rals)

where each p(rz|s) is modelled as a Gaussian with means and

variances
@ p(s) is uniform (hence MAP=ML)
@ ML decoding finds a peak of the likelihood
@ Bayesian method finds posterior mean

Cricket Cercal System

error (degrees)

0

maximum likelihood

-180 -90 0 90 180

@ These methods improve performance over the vector method (but

not that much, due to orthogonality...)
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General Consideration of Population Decoding

wind direction (degrees)

0

Bayesian

-180 -90 0 90 180

wind direction (degrees)

[Dayan and Abbott (2001) after Salinas and Abbott (1994)]
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Poisson firing model over time T, count ny = r T spikes.

[Dayan and Abbott (2001)]
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N

pris) = ]
a;1

logp(rls) = Y

1

N
Il

(fa(s) T)"™

ny!

exp(—fa(s)T)

na |Og fa(S) 4+ ...

Approximating that >, fa(s) is independent of s

36/63



ML decoding

@ sy is stimulus that maximizes log p(r|s), determined by

fa(SML)

N

f/
S, a(sm) _
a=1

@ If all tuning curves are Gaussian f, = Aexp[— (S — s3)?/202] then

Za laSa

Sy =
ML — Za ra

which is simple and intuitive, known as Center of Mass (cf
population vector)
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Fisher information

@ Fisher information is a measure of the curvature of the log
likelihood near its peak

92 log p(r|s 62Io rls
/F(S)=< Ssﬁ; ! )> /drp fls) gp(! )

(the average is over trials measuring r while s is fixed)

@ Cramér-Rao bound says that for any estimator
[Cover and Thomas, 1991]

(1 + beg(5))?
Ost = Tt)

, 2
@ efficient estimator if aes, = %-

In the bias-free case an efficient estimator o2, = 1/Ig(s).
@ ML decoder is typically efficient when N — oc.
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Accuracy of the estimator

@ Bias and variance of an estimator Sgg;

best(S) = (Sest) —S
05st(S) = ((Sest — (Sest))?)
((s— Sesl‘)2> = best( )+ Jgst

@ Thus for an unbiased estimator, MSE ((s — Sest)?) is given by o2
the variance of the estimator

Fisher information

@ In homogeneous systems /¢ indep. of s.
@ More generally Fisher matrix (/r);(s) = < 8§§—§g‘s)>
/ S
@ Taylor expansion of Kullback-Leibler
Dri(P(s), P(s + ds)) = >_;dsidsi(IF)j
@ Not a Shannon information measure (not in bits), but related to

Shannon information in special cases,e.g.
[Brunel and Nadal, 1998, Yarrow et al., 2012].

est’
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Fisher information for a population

For Gaussian tuning curves

For independent Poisson spikers

IF(s):< %> TZ ( 3)2_2((2))

For dense, symmetric tuning curves, the second term sums to zero.

Using f4(s) = (ra) we obtain

TZ fa s)

For dense f4(s) = Ae~(s—s0+a.ds)*/20%, with density p = 1/ds, sum
becomes integral

Ir =V2rTAp/ow
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1.0
0.8
0.6 -

IF ( maxT)

[Dayan and Abbott (2001)]

@ Note that Fisher information vanishes at peak as f;(s) = 0 there
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Slope as strategy

Fig. 4. Prediction for other sensory
systems (olfaction). Color map, sche-
matic odor trail; gray line, path of an
organism that followed the trail's peak
concentration. This strategy is typically
assumed for odor-trail following (3).
Black line, path of the same organism
when using a strategy similar to that of
our bats, that is, following the maxi-
mum slope of the odorant concentra-
tion (17). The movement jitter in this
case is smaller, making the tracking
smoother and therefore faster.

From paper on bat echo location [Yovel et al., 2010] )

—

o

(o) uogEUBILND JUBIOPD
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Population codes and noise correlations

Noise in neurons can be correlated p(r|s) # ]‘[g:1 p(ra|s). Information
in the code can go up or down with correlations depending on details
[Oram et al., 1998, Shamir and Sompolinsky, 2004,

Averbeck et al., 2006] ...

Information () i ormation (1.4
unshufled responses in shuffled responses

Information ()

0
f [ T [ T 1
0 50 100 150 200 250 300 350 400 450 500

Population size
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Population codes and correlations

Gaussian noise model, with stimulus dep. covariance Q(s):

1 o—[r—f(s)]7Q " [r—f(s)]/2
(27)Ndet Q

then [Abbott and Dayan, 1999]

P(r|s) =

I =1(s)Q7(s)f(s) + %Tr[c:z'(s)o—1 (5)Q'(s)Q7'(s)]

When Q'(s) = 0 and Q; = q(|i — j|), can use spatial Fourier
representation. /g becomes sum of signal-to-noise ratios

F(k)|?
Z\(

Thus noise with same correlation length as f'(s) is most harmful
[Sompolinsky et al., 2002]
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Population codes and correlations

=

Homogeneous Heterogeneous

k=0 K =025

]
o

la1>/7

-
o
Figher information

0
=10 0 10 =10 0 10
Fourier component 1[;2 108 0t 1.:;2 109 0

Plots:[SNR for homo/heterogen; Fisher vs # neurons]

@ Heterogeneity prevents information saturation caused by
correlations[Shamir and Sompolinsky, 2006, Ecker et al., 2011]

@ # informative Fourier modes grows with N only when heterogen.

@ Yet, in expts reduced correlation is linked to improved
performance [Cohen and Newsome, 2008]
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Population codes and correlations: Retina

Fit coupled I&F-model (see encoding) to retina data

a  Coupled spiking model e Incoming coupling filters

Si:ﬂrﬂulus ‘Stochastic @)
er lﬂ.l('.lnllneaan'mr splkJng . .
c Stimulus filter d Postspike ON OFF Q
Il filter o

1 =

Neuron 1 _% 08 S

0] 2
Coupling

0 0.8

1
0 20 40 O 20 40 O 20 40

ON OCDg OFF O 5
h C(%)% ~—» X0

1.0—— =

Neuron 2

b ON mosaic OFF mosaic /" 15
O(Q'o D%U 05
: 1.0
%)lg)o ?%5() —-200 —100 20 40 O 20 40 o 20 40
o= 120 pm Time (ms)

[Pillow et al., 2008]
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Population codes and correlations: Retina

Y]

o
.
=

[l

%]
=

@
pls) \ ] -
Encoding Bayesian | £ =

plris) model decoding i’ 20 % g

Z o
2 o E 4 B

1 10t e =
bt '| W HHHEE
\ ! |"|I F [ |l|:" 1" ! 5 5 é

III' ] III L I|| I|I G
Bayesian decoding

[Pillow et al., 2008]
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>
o)

Maximize Ir = T3, B to minimize MSE error

Optimal receptive field width? Alternative view on optimal coding width
fa(s)
[Zhang and Sejnowski, 1999]

Stim.
@ (f(s))? is large for narrow curves m

@ /ris increased by including many neurons in the sum, but this is in (e o o o o) UOP“mizeweights
conflict with narrow tuning: trade-off Connections /\

. . . . External noise
@ Gaussian tuning curves and replace sum with integral. D = 1: o o o 6 &) ;
. s . 8 4 0 4 8
accuracy best for infinitely narrow tuning Spatial requency mode

@ For D = 2 there is no effect of the width on /. M /\

@ For D > 2 Ir increases as tuning curves broaden ~_/
Preferred orientation

/ Fourier transform

Input activity
~

Input activity

Inverse Fourier

Weights

Output activity

[Brown and Béacker, 2006]. N N (-
. . . . . Pref. orientation (deg)
@ What is D in various brain areas? (93 in IT [Lehky et al., 2014])

Output current

[Renart and van Rossum, 2012]
Consider transmission. Maximize /2! wrt connections.
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Hippocampal Place Cell Decoding

9
Qutput
———— Weights
g 60 [Brown et al., 1998]
£ @ Encoding: place cells modelled as inhomogeneous Poisson
z processes
3 30} .
3 @ Dynamic model: random walk
) @ Decoding: approximate Kalman filtering
0 ™= ' ’ ' @ Approach here is to perform inference to invert the encoding

0 30 60 90
Input width (deg)

Minimal loss if output is tuned to input. l.e. RF width depends on input.

process
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Example: Decoding in Hippocampus

a Position b
T Decoding analysis [Zhang et al., 1998]

4 ']-3‘ > Place receptive fields X Position Y Position X versus Y

E
= 35 2 . True :—'\ I3
2 < ’ ; \ J”;’D?’EDY;‘ Y 2} \
% = __- 70 - i U i ; R N - X
- o Decoding : 4 l ;,} Vo e 1R
0 B algorithm K
1] 35 T g — Probabilistic m r .
B - B ANA N
o ’ 4 b ‘-‘f u ’P] s FIG.3. True X and Y positions of animal 1
Sp i kES running on figure-8 maze as compared with posi-
Probabilistic " , . §|  tions reconstructed by different methods with 25
(1 Step) IR ! I I | F‘l place cells. Same 60-s segment is shown in all
4 % ‘ - plots. Time window for reconstruction was 0.5 s,
|I I I I } L { o which was moved forward with a time step of 0.25
s. For a fair comparison of different methods, if
I I I I I I . none of 25 cells fired within time window, recon-

structed position at preceding time step was used.
Probabilistic or Bayesian methods were especially
accurate and erratic jumps in reconstructed trajec-
tory were reduced by a continuity constraint by
using information from two consecutive time

L1 Hﬁbll | it Wﬂm %ﬂj MJTYTM%
L1 111 = I%}WW% PEWHLMW ‘_ :} “
ey PO g Mgy

£
[Brown et al., 2004] S
w

Encoding analysis

15 sec 15 sec
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Example: Motor decoding

[Shpigelman et al., 2005]

@ Rhesus monkey, 43 electrodes in M1

@ Monkey controls cursors on a screen using two manipulanda to
perform a centre-out reaching task

@ Predict hand velocity based on 10 time bins, each of length 100
ms in all 43 neurons.

@ Can use linear regression, polynomial regression, Gaussian
kernel (support vector regression), spikernel (allows time warping)

@ More sophisticated methods outperform linear regression, but ik

linear is already decent . : . ‘ ‘ | , ‘ ‘ . ‘
. . 200 202 204 206 208 210 212 214 216 218 220
State-of-the-art w. Kalman filters [Gilja et al., 2012] [Shpigelman et al., 2005]

|
|
|
|
|
Ll L
206 208 210 212 214 216 218 220

— — Go Signal / Target Reach
m— Actual

= Spikernel

—— Linear Regression

N

55/63 56/63



Summary

References |

Reconstruction of temporal stimulus
Spike distances
Discrimination task

Population decoding: vector method and “optimal” decoding
methods

Specialist applications using domain knowledge
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