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Sparse distribution of coefficients
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FiG. 1. Himocgrams of wavelet marginal disiributions for (a) Gaussion maose; and {b) a typical nataral image.

Wertizal axis gives log probability (rescaled).

[Wainwright, Simoncelli, Willsky 2001]
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Independent Components aren’t Independent!

» Consider two Gabor functions at the same spatial position
and orientation, but with different scales

» Coarser scale is denoted “parent”, finer scale is denoted
child

» Plot the conditional histogram p(child|parent).

» “bowtie” structure for a natural image (Buccigrossi and
Simoncelli, 1999)
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Gaussian Scale Mixtures

» A non-Gaussian distribution can be produced as a scale
mixture of Gaussians

p(v) = / N(v;0,0%)p(0?)do?

Child

» Example: Student-t distribution
p(v) = c(1 + v3/v)~(i1/2
is obtained as a GSM from an inverse-x? distribution on

0 15 0 15 30 the variance
Parant

[Wainwright, Simoncelli, Willsky 2001]
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GSM construction is not limited to univariate Gaussians. Non-stationary statistics of ICA coefficients 1
Construction

Vi=o0Z ———

with z; ~ A/(0, 1) gives

p(v) = //\/'(V;O,cle)p(az)dcr2

Exercise: show that cov(v7, v#) > 0 for GSM

Exercise: show that kurt(v;) > 0 for GSM
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The idea is that the local variance o< can be different in thtit 1 2o dledaiatida
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different parts of the image. Flat surfaces have no variation ladlaasaanas lalasaaaaa
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Using a Gamma(3/2, 3/2) prior on 7 = o2 it can be shown e lmeadaaa~ AAAAAidran
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B+ v

var(vo|vy) =
(v2|v1) 51

. . [Fig 1, Karklin and Lewicki (2005)]
Note that var(v2|vy) increases as a function of |v4|
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Non-stationary statistics of ICA coefficients 2

Hierarchical models for capturing dependencies
among sparse components
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» Karklin and Lewicki (2003)

[Fig 2, Karklin and Lewicki (2005)]
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g Karklin and Lewicki (2003)
B > o = exp(3_; bjsj), with a factorized Laplacian prior on s
» They learn G weights, then learn B weights
» Again use MAP inference
v
§ = argmaxg p(V|B, s)p(s)
» B s learned by maximum likelihood
G » Vision expts: 100 higher level (s) units, 20 x 20 input
patches
u
[after Lewicki, 2004]
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[Fig 6, Karklin and Lewicki, 2005]

[Fig 2, Hyvérinen and Hoyer, 2000]
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Independent Subspaces

Hyvarinen and Hoyer (2000)

» The v;s are not assumed to be independent. Divide the v
variables into groups, and allow dependencies within
groups, but not between groups

» Note that v; and v; in a group are uncorrelated, but
cov(v2, \/]2) # 0

» (As viewed using K & L model) Each group of v variables

has a single s parent, and all B weights from the s-parent
to the group are 1. Optimize G under this model.

» |SA is described in detail in HHH chap 10

Models of Complex Cells

» Energy model for complex cells (Adelson and Berger,
1985). Let v4 and v» be responses of even (cosine) and
odd (sine) Gabor functions at same location, orientation
and scale. Then

r=ry+c(v: 4 Vi)

» Close correspondence between the variance of the group
in the generative model and r
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Topographic ICA

Hyvarinen, Hoyer and Inki (2001)
» More general than independent subspaces.

» (As viewed using K & L model) B matrix is not learned, but
is specified to have a neighbourhood structure.

» Yields a topographic arrangement of basis functions

» Argument that topographic organization would minimize
wiring length in the brain (HHH §11.5)

» TICA is described in detail in HHH chap 11
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Further work

» Other routes to ICA: Slow feature analysis (Wiskott and
Sejnowski, 2002; discussed in HHH §16.8)
» Spatio-temporal bubbles (Hyvarinen et al, 2003)

» Rao and Ballard (1999) consider correlations between filter
outputs observed by higher level units that can “see”
multiple patches. They observed end-stopping like effects
due to feedback connections (see later lecture)
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[Fig 11, Hyvérinen et al., 2005]
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» Hyvérinen, Gutmann and Hoyer (2005) consider ICA
analysis of the outputs of complex cells, and find edge-like
pooling of spatial frequency channels. They predict that in
V2 (or related area) cells will have optimal stimulus closer
to a step edge (cf band-pass edges optimal for V1 simple
and complex cells), and optimal stimulus will be more
elongated. See HHH ch 12

» Linear superposition is not sufficient: occlusion
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foreground (original) mask (original)

foreground (transformed) mask (transformed)

[Williams and Titsias, 2004]
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