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Sparse distribution of coefficients

[Wainwright, Simoncelli, Willsky 2001]
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Independent Components aren’t Independent!

I Consider two Gabor functions at the same spatial position
and orientation, but with different scales

I Coarser scale is denoted “parent”, finer scale is denoted
child

I Plot the conditional histogram p(child|parent).
I “bowtie” structure for a natural image (Buccigrossi and

Simoncelli, 1999)
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[Wainwright, Simoncelli, Willsky 2001]
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Gaussian Scale Mixtures

I A non-Gaussian distribution can be produced as a scale
mixture of Gaussians

p(v) =
∫
N (v ;0, σ2)p(σ2)dσ2

I Example: Student-t distribution

p(v) = c(1 + v2/ν)−(ν+1)/2

is obtained as a GSM from an inverse-χ2 distribution on
the variance
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I GSM construction is not limited to univariate Gaussians.
Construction

vi = σzi

with zi ∼ N (0,1) gives

p(v) =
∫
N (v;0, σ2I)p(σ2)dσ2

I Exercise: show that cov(v2
i , v

2
j ) ≥ 0 for GSM

I Exercise: show that kurt(vi) ≥ 0 for GSM
I The idea is that the local variance σ2 can be different in

different parts of the image. Flat surfaces have no variation
(“blue-sky effect”)

I Using a Gamma(β/2, β/2) prior on τ = σ−2 it can be shown
that

var(v2|v1) =
β + v2

1
β − 1

Note that var(v2|v1) increases as a function of |v1|
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Non-stationary statistics of ICA coefficients 1

[Fig 1, Karklin and Lewicki (2005)]
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Non-stationary statistics of ICA coefficients 2

[Fig 2, Karklin and Lewicki (2005)]
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Hierarchical models for capturing dependencies
among sparse components

vi = σizi

σi = f (
∑

j

bijsj)

e.g.
I Wainwright, Simoncelli, Willsky (2001)
I Hyvärinen, Hoyer, Inki (2001)
I Karklin and Lewicki (2003)
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[after Lewicki, 2004]
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Karklin and Lewicki (2003)

I σi = exp(
∑

j bijsj), with a factorized Laplacian prior on s
I They learn G weights, then learn B weights
I Again use MAP inference

ŝ = argmaxs p(v̂|B,s)p(s)

I B is learned by maximum likelihood
I Vision expts: 100 higher level (s) units, 20× 20 input

patches
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[Fig 6, Karklin and Lewicki, 2005]
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Independent Subspaces

Hyvärinen and Hoyer (2000)
I The vis are not assumed to be independent. Divide the v

variables into groups, and allow dependencies within
groups, but not between groups

I Note that vi and vj in a group are uncorrelated, but
cov(v2

i , v
2
j ) 6= 0

I (As viewed using K & L model) Each group of v variables
has a single s parent, and all B weights from the s-parent
to the group are 1. Optimize G under this model.

I ISA is described in detail in HHH chap 10
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[Fig 2, Hyvärinen and Hoyer, 2000]
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Models of Complex Cells

I Energy model for complex cells (Adelson and Berger,
1985). Let v1 and v2 be responses of even (cosine) and
odd (sine) Gabor functions at same location, orientation
and scale. Then

r = r0 + c(v2
1 + v2

2 )

I Close correspondence between the variance of the group
in the generative model and r
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Topographic ICA

Hyvärinen, Hoyer and Inki (2001)
I More general than independent subspaces.
I (As viewed using K & L model) B matrix is not learned, but

is specified to have a neighbourhood structure.
I Yields a topographic arrangement of basis functions
I Argument that topographic organization would minimize

wiring length in the brain (HHH §11.5)
I TICA is described in detail in HHH chap 11
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[Fig 11, Hyvärinen et al., 2005]
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Further work

I Other routes to ICA: Slow feature analysis (Wiskott and
Sejnowski, 2002; discussed in HHH §16.8)

I Spatio-temporal bubbles (Hyvärinen et al, 2003)
I Rao and Ballard (1999) consider correlations between filter

outputs observed by higher level units that can “see”
multiple patches. They observed end-stopping like effects
due to feedback connections (see later lecture)
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I Hyvärinen, Gutmann and Hoyer (2005) consider ICA
analysis of the outputs of complex cells, and find edge-like
pooling of spatial frequency channels. They predict that in
V2 (or related area) cells will have optimal stimulus closer
to a step edge (cf band-pass edges optimal for V1 simple
and complex cells), and optimal stimulus will be more
elongated. See HHH ch 12

I Linear superposition is not sufficient: occlusion
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foreground (original) mask (original)

foreground (transformed) mask (transformed)

[Williams and Titsias, 2004]
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