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Some notation:

• δij : Kronecker delta. δij = 1 if i = j and 0 otherwise. i, j ∈ N.

• δ(x−y): Dirac delta.
∫
dx f(x)δ(x−y) = f(y). Can be seen as infinitely narrow (and high) Gaussian

distribution, or a as continuous version of the Kronecker delta.

• ∂x = ∂
∂x : partial derivative w.r.t. x.

• ⟨x⟩: expectation (see lectures for interpretation).

• N (µ, σ2): Gaussian distribution with mean µ and variance σ2.

1 Encoding lectures

1.1 Higher moments of Gaussian

Q: Consider an uncorrelated (white) Gaussian signal s(t). Calculate its 3rd and 4th order moments,
m3 = ⟨s(t1)s(t2)s(t3)⟩ and m4 = ⟨s(t1)s(t2)s(t3)s(t4)⟩. Confirm with simulation.

The third moment m3 = ⟨s(t1)s(t2)s(t3)⟩ is zero. Namely, if t1 ̸= t2 ̸= t3 then m3 = ⟨s⟩3 = 03 = 0.
If t1 = t2 = t3, m3 =

⟨
s3
⟩
=
∫
N (0, σ2)x3dx = 0, as this is the integral over an odd function. For

t1 = t2 ̸= t3, m3 = ⟨s⟩
⟨
s2
⟩
= 0.σ2 = 0.

Consider m4 = ⟨s(t1)s(t2)s(t3)s(t4)⟩. Here we have contributions when t1 = t2 and t3 = t4 and
permutation

m4 = δ(t1 − t2)δ(t3 − t4)
⟨
s2
⟩2

+ δ(t1 − t3)δ(t2 − t4)
⟨
s2
⟩2

+ δ(t1 − t4)δ(t2 − t3)
⟨
s2
⟩2

= [δ(t1 − t2)δ(t3 − t4) + δ(t1 − t3)δ(t2 − t4) + δ(t1 − t4)δ(t2 − t3)]σ
4

The fact that there is no additional contribution when t1 = t2 = t3 = t4, is related to the fourth
cumulant of the Gaussian being zero.

In Matlab you can test this by trying things like mean(randn(1,n).*randn(1,n).*randn(1,n).*randn(1,n))
and mean(randn(1,n).^2*randn(1,n).*randn(1,n)).

1.2 Wiener Kernel

Q: Suppose that the response of a system is given by a 2nd order Wiener approximation:

r(t) = g0 +

∫
dt1g1(t1)s(t− t1) +

∫
dt1dt2g2(t1, t2)s(t− t1)s(t− t2)− σ2

∫
dt1g2(t1, t1)

Show that when the stimulus is Gaussian with variance σ2, one indeed can extract the kernels from the
correlates of stimulus with the response without contamination of higher orders, i.e. show that ⟨r⟩ = g0
and ⟨r(t)s(t− τ)⟩ = σ2g1(τ).

Zero order term:
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⟨r⟩ = g0 +

⟨∫
dt1g1(t1)s(t− t1)

⟩
+

⟨∫
dt1dt2g2(t1, t2)s(t− t1)s(t− t2)− σ2

∫
dt1g2(t1, t1)

⟩
= g0 +

∫
dt1 ⟨s⟩ g1(t1) +

∫
dt1dt2g2(t1, t2) ⟨s(t− t1)s(t− t2)⟩ − σ2

∫
dt1g2(t1, t1)

= g0 + 0 +

∫
dt1dt2g2(t1, t2)δ(t1, t2)σ

2 − σ2

∫
dt1g2(t1, t1)

= g0

First order. Similar calculation gives

⟨r(t)s(t− τ)⟩ = 0 +

⟨∫
dt1g1(t1)s(t− t1)s(t− τ)

⟩
+ 0)

=

∫
dt1g1(t1)⟨s(t− t1)s(t− τ)⟩ = σ2

∫
dt1g1(t1)δ(τ − t1) = σ2g1(τ)

1.3 Discrete time kernel

Q: Assume a linear system, discrete in time, described by 0th and 1st order kernels, so that we can write
r̂ = Sg (see lecture slides for the construction of S and definition of g). Derive the kernels g0 and gi1 that
minimizes mean square error E = (r − Sg)T (r − Sg).

Minimize E = (r − Sg)T (r − Sg) w.r.t. to g, where g = (g0, g
1
1, . . . , g

N
1 ). For definition of S see

lecture notes.

dE

dgj
=

d

dgj
[(r − Sg)T (r − Sg)]

= −2(r − Sg)
dSg

dgj

= −2
∑
i

(r − Sg)i
d

dgj

∑
k

Sikgk

= −2
∑
i

(r − Sg)i
∑
k

Sikδj,k

= −2
∑
i

(r − Sg)iSij

= −2(STr)j + 2(STSg)j

As this needs to be zero for all j, STr = STSg, or g = (STS)−1STr. This is an equation you often see
in linear regression. Note that at this point we have not used anything about the stimulus.

STS =
∑

j SijSkj , i.e. it equals the dot product of the columns of S. If S is a design matrix
for a Gaussian stimulus then the expected value is

⟨
STS

⟩
= diag(n,nσ2,nσ2, nσ2, . . .), or, ⟨STS⟩ij =

nδi,k(σ
2 + (1− σ2)δi,1). So

g0 =
1

n

∑
i

S0iri = ⟨r⟩

gi1 =
1

nσ2

∑
Sijrj =

1

nσ2

∑
Si−jrj

This is a discrete formulation of the first two Wiener kernels.

1.4 Optimality of STA as stimulus

Q: Assume a linear system described by 0th and 1st order kernels, r(t) = r0 +
∫
dt1g1(t1)s(t− t1). Derive

the stimulus that maximizes the response r(t). Constrain the ’energy’ of the stimulus to be
∫
s(t)2dt = 1.
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The response of linear system is r(t) = r0 +
∫
dt1g1(t1)s(t− t1), with Lagrange multiplier to constrain

|s|2, we maximize f(t) = r(t) − λ
∫
dt1s

2(t1) wrt s(t). Note, this is a functional derivative; if unfamiliar,
you can discretize in time (sums become integrals).

δf(t)

δs(t0)
=

δr(t)

δs(t0)
− λ

δ
∫
dt1s

2(t1)

δs(t0)

= 0 +

∫
dt1g1(t1)

δs(t− t1)

δs(t0)
− λ

∫
dt1δs

2(t1)/δs(t0)δ(t0 − t1)

=

∫
dt1g1(t1)δ(t0 − t+ t1)− 2λ

∫
dt1s(t1)δ(t0 − t1)

= g1(t− t0)− 2λs(to)

Set to zero for all t0, hence s(t0) ∝ g1(t− t0).
Extra: what happens for different constraints such as

∫
s(t)kdt = 1?
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2 Decoding lecture

2.1 Fisher Information Gaussian noise

Q: Assume N neurons with Gaussian independent noise and tuning curves fi(θ) (i = 1 . . . N). Show that
the Fisher info equals If (θ) =

1
σ2

∑N
i=1[f

′
i(θ)

2].

The Fisher information is defined as If ≡ −
∫
P (r|θ)∂

2 logP (r|θ)
∂θ2

dr. For independent. Gaussian noise
P (r|θ) =

∏N
i=1 P (ri|θ) =

∏N
i=1

1
Z exp(−[ri − fi(θ)]

2/2σ2).
So that

∂2 logP (r|θ)
∂θ2

=

(
−N logZ −

∑
i

[ri − fi(θ)]
2/2σ2

)′′

=
1

σ2

(∑
i

[ri − fi(θ)]f
′
i(θ)

)′

=
1

σ2

∑
i

[
(ri − fi(θ))f

′′
i (θ)− (f ′

i(θ))
2
]

Now use that
∫
P (r|θ)dr = 1 and

∫
P (r|θ)ridr = fi. Also note that for this factorizing probability and a

general function g(ri) then
∫
drP (r|θ)

∑
i g(ri) =

∑
i

∫
driP (ri|θ)g(ri). So that

If (θ) = −
∫

P (r|θ) 1

σ2

∑
i

[(ri − fi(θ))f
′′
i (θ)− (f ′

i(θ))
2]dr

= − 1

σ2

∑
i

{
f ′′
i (θ)

∫
P (ri|θ)[ri − fi(θ)]dri − (f ′

i(θ))
2

∫
P (ri|θ)dri

}

=
1

σ2

N∑
i=1

[f ′
i(θ)

2].

2.2 Fisher Information Poisson noise

Q: Assume N neurons with independent Poisson noise and homogeneous tuning curves fi(θ) (i = 1 . . . N).
Assume that the coding is dense (i.e. each stimulus leads to the response of many neurons).

First show that the only stimulus dependent term of
∑

i logP (ni) equals
∑

i ni log fi(θ). Next, show

that the Fisher info equals If = T
∑

i
f ′2
i
fi

− f ′′
i

Finally, show that the Fisher info equals If (θ) =
1
σ2

∑N
i=1

[f ′′
i (θ)]2

fi(θ)
.

The number of spikes that a Poisson neuron at rate fi fires in a time T is, P = [fi(θ)T ]
ni exp(−fiT )/ni!.

To calculate FisherInfo:∑
i logP (ni|θ) =

∑
i[ni log fiT − log ni! − fiT ]. Now

∑
i fi ≈ const for dense coding, so the only

θ-dependent term is
∑

i ni log fi(θ). Therefore
∂2 logP

∂θ2
=
∑

i ni(
f ′
i
fi
)′ =

∑
i ni[(

f ′
i
fi
)2 − f ′′

i
fi
] and If =

∑∞
n(1),n(2),...,n(N) p(ni)ni[(

f ′
i
fi
)2 − f ′′

i
fi
].

Note that
∑

n p(n)n = Tf (the average of the firing rate is the tuning curve). So that

If (θ) = T
∑
i

f ′
i(θ)

2

fi(θ)
− f ′′

i (θ)

For dense tuning tuning curves we can replace the sum over units by an integral over centres of the tuning
curves. This cancels out the second term. You can see this by for instance substitution of Gaussian shape
tuning curves fi(θ) = A exp(−(∆i− s)2/2σ2).
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2.3 Example Fisher information correlated neurons

Q: Consider two neurons, with response r1 and r2 with correlated Gaussian noise ri = fi(θ) + ηi. As-
sume the correlation matrix of noise η equals Qij = σ2(δij + c(1− δij)). The neurons have tuning curves
f1(θ) and f2(θ) = αf1(θ). Calculate Fisher info IF (θ). You can use that for stimulus-independent noise
IF = f ′(θ)Q−1f ′(θ).

For correlated Gaussian noise (e.g. Abbott and Dayan, Neural comp 1999),

I = f ′(θ)Q−1(θ)f ′(θ) +
1

2
Tr(Q′(θ)Q−1(θ)Q′(θ)Q−1(θ))

which in our case simplifies to I = f ′(θ)Q−1f ′(θ).

As Q−1 = 1
σ2(1−c2)

(
1 −c
−c 1

)
, so I = 1

σ2(1−c2)
[|f ′

1|2 + |f ′
2|2 − 2cf ′

1.f
′
2]. Now assume that f2(θ) =

αf1(θ) (so the neurons have identical tuning apart from a scale factor, that could be negative).

I =
1

σ2(1− c2)
|f ′

1|2[1− 2cα+ α2]

If α = 1, then I = 2
1+c

|f ′
1|2
σ2 . Note that if α = −1, I = 2

1−c
|f ′

1|2
σ2 , so now correlation helps the

information.
Note that if α = 0 (one neuron does not code for the stimulus), the information diverges for c → ±1.

How would you build a perfect decoder in that limit?

2.4 Cramer-Rao bound with bias

Q: Given data x, define estimator T (x) of a quantity θ. If unbiased ⟨T ⟩ = θ, but if the estimator is biased
⟨T ⟩ = θ + b(θ), where b(θ) denotes the bias. Derive the Cramer-Rao bound for a biased estimator.

Define ’score’ V ≡ ∂θ logP (x|θ) = ∂θP (x|θ)
P (x|θ) . Note that for a 1D Gaussian V ∝ (x− θ)/σ2. The Fisher

info is defined as If =
⟨
V 2
⟩
.

According to Cauchy-Schwartz, (x.y)2 ≤ |x|2|y|2. This is usually done for vectors x and y. Here we re-
place the sum over the dimensions in the inner-products with the sum over trials: ⟨(V − ⟨V ⟩)(T − ⟨T ⟩)⟩2 ≤⟨
(V − ⟨V ⟩)2

⟩ ⟨
(T − ⟨T ⟩)2

⟩
.

Note that ⟨V ⟩ =
∫
dxp(x)∂θP (x|θ)

P (x|θ) = ∂θ
∫
dxP (x|θ) = ∂θ1 = 0. So

⟨V T − V ⟨T ⟩⟩2 ≤
⟨
V 2
⟩ ⟨

(T − ⟨T ⟩)2
⟩

⟨V T ⟩2 ≤
⟨
V 2
⟩
var(T )

Now ⟨V T ⟩ =
∫
dxp(x)∂θP (x|θ)

P (x|θ) T (x) = ∂θ
∫
dxP (x|θ)T (x) = ∂θ ⟨T ⟩ = 1+b′(θ). So we have

⟨
(T − θ)2

⟩
≥

[1+b′(θ)]2

If
− b2(θ) or

var(T ) ≥ [1 + b′(θ)]2

If
.

2.5 Convolution in Fourier domain

Q: Show that the Fourier transform of a convolution of two function equals the product of the Fourier
transforms. The Fourier transform of a function is defined as f̃(ω) =

∫
dt exp(iωt)f(t).

Define Fourier Transform f̃(ω) =
∫
dt exp(iωt)f(t) (there are are various normalization conventions for

the Fourier transform. In the end this should not matter). (f ⋆ g)(τ) ≡
∫
dtf(t)g(τ − t). So f̃ ⋆ g(ω) =∫

dτ
∫
dtf(t)g(τ − t) exp(iωτ).
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On the other hand

f̃(ω).g̃(ω) =

∫
dt1dt2 exp(iωt1)f(t1) exp(iωt2)g(t2)

=

∫
dt

∫
dτ exp(iωt) exp(−iωt+ iωτ)f(t)g(τ − t)

=

∫
dt

∫
dτ exp(iωτ)f(t)g(τ − t)

(using t1 = t,t2 = τ − t). So that indeed f̃ ⋆ g(ω) = f̃(ω).g̃(ω)

3 Information Theory

3.1 Derivation of mutual information

Q: Derive the expression for the mutual information Im = H(R)−H(R|S) in terms of the distribution p(r, s).

Use that p(r|s)p(s) = p(r, s), p(r) =
∑

s p(r, s).

Im = H(R)−H(R|S)

= −
∑
r

p(r) log p(r) +
∑
r,s

p(r|s)p(s) log p(r|s)

= −
∑
r,s

p(r, s) log p(r) +
∑
r,s

p(r, s)p(s)/p(s) log[p(r, s)/p(s)]

=
∑
r,s

p(r, s) log
p(r, s)

p(r)p(s)

3.2 Mutual information 2 correlated Gaussians

Q: Assume two correlated Gaussian variables y1 and y2. Show that mutual information I(Y1, Y2) =

−1
2 log(1− ρ2) with Pearson correlation coefficient ρ =

σ2
12

σ1σ2
.

Introduce y =(y1, y2) and, if needed, translate the integrals so that they are centred around zero-mean.

I(Y1, Y2) =

∫
P (y1, y2) log

P (y1, y2)

P (y1)P (y2)
dy1dy2

=

∫
N12 exp(−yTC−1y/2) log

[
N12

N1N2
exp(−yTC−1y/2 + y21/2σ

2
1 + y22/2σ

2
2)

]
=

∫
N12 exp(−yTC−1y/2)

[
−yTC−1y/2 + y21/σ

2
1 + y22/σ

2
2 + log

N12

N1N2

]
= −1 + 1/2 + 1/2 + log

N12

N1N2

where the normalisation factors are 1/N12 = 2π
√
detC, 1/N1 = 2πσ1.(

N12
N1N2

)2
=

σ2
1σ

2
2

detC =
σ2
1σ

2
2

σ2
1σ

2
2−σ4

12
= [1 − ρ2]−1, with Pearson correlation coefficient ρ =

σ2
12

σ1σ2
. So that

I(Y1, Y2) = −1
2 log(1− ρ2). Note, if ρ → ±1 then I → ∞, and if ρ → 0 then I → 0.

3.3 Example of synergistic code

Q: Consider the following table of stimulus s and the response of two units r1 and r2 and their probability
P .
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s r1 r2 P (s, r1, r2)
0 0 0 0
1 0 0 1/4
0 0 1 1/4
1 0 1 0
0 1 0 1/4
1 1 0 0
0 1 1 0
1 1 1 1/4

Show that this a synergistic code.

Note that P (r) =
∏

i=1,2 P (ri). Im(r1, s) = Im(r2, s) = 0, but Im((r1, r2), s) > 0. In other words,
observation of just r1 or r2 provides no information about the stimulus. However, observing both does.

3.4 Maximal entropy distributions

(Discrete distributions) Q: Which distribution p(ri) maximized the entropy H(R) = −
∑

i p(ri) log2 p(ri)?
What if the mean is constrained? Assume that the bins are linearly spaced and start at r = 0. Thus
ri = i∆r. What if the variance is constrained?

We write pi = p(ri).

• Only constrained is that p is a distribution, so that
∑

pi = 1. Maximize E = H − λ(
∑

pi − 1),
where λ is a Lagrange multiplier. dE

dpj
= 0∀j (using different indices i and j to prevent errors) so

dE
dpj

= 0 =
∑

i
d

dpj
(−pi log pi − λpi) =

∑
i δij − log pi − pi

pi
− λ = 0. So log pi = −1 − λ∀i so

pi = constant i.e. a uniform distribution

• Constrain mean to be r̄. Now E = H − λ(
∑

pi − 1)− λ2(
∑

piri − r̄). So log pi = −1− λ− λ2ri ,
so pi ∝ exp(−λ2ri). Which after normalization and setting the mean gives pi = 1/r̄ exp(−ri/r̄).

• Constrain variance, same as above but now add term E = H − λ(
∑

pi − 1) − λ2(
∑

pir
2
i − σ2

r )
(assuming zero mean). Now pi ∝ exp(−cr2i ).

3.5 Gaussian variable with noise

Q: Consider a noise response r = s+η, where both signal s and noise η are Gaussian distributed. Calculate
the mutual information between r and s.

What is the MAP estimate of s given r?

Hnoise = 1
2 log2(2πeσ

2
η), Hr = 1

2 log2(2πe(σ
2
eta + σ2

s)). Hence I = H − Hnoise = 1
2 log2(

σ2
η+σ2

s

σ2
η

) =

log2

√
1 + σ2

s/σ
2
η = log2

√
1 + SNR, with SNR ≡ σ2

s/σ
2
η.

Note if r = r(f), s = s(f) I =
∫
df log2(1 + SNR(f)).

MAP estimate of s

P (s|r) = P (s)P (r|s)/P (r)

=
1

P (r)
N exp[−s2/2σ2

s ] exp[−(r − s)2/2σ2
η]

=
1

P (r)
N exp[−1

2
s2(σ−2

s + σ−2
η ) + srσ−2

η ]

Maximal d/ds = 0, if s = r σ2
s

σ2
s+σ2

η
. Interpretation: because r can be large due to the noise, r “conser-

vatively” estimates s.
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