Neural Information Processing: 2012-2013 Assignment 1

School of Informatics, University of Edinburgh

Instructor: Mark van Rossum

28th February 2013

Remember that plagiarism is a university offence. Please read the policy at:

http://www.inf.ed.ac.uk/admin/ITO/DivisionalGuidelinesPlagiarism. html

Practical information

You should produce a digital document for your assignment answers (e.g. with lyx) and submit this electronically using the submit command on a DICE machine. The format is e.g.

submit
msc nip 1 nipasst1.pdf

You can check the status of your submissions with the show_submissions command. NOTE: postscript or pdf formats are acceptable, other formats are not. Make sure that the file you submit prints ok on the DICE system, in particular when you produced it on a non-Unix machine.

Late submissions

Late submissions will receive a zero mark. Only evidence for illness or other serious reasons can prevent this at the discretion of the instructor. See

http://www.inf.ed.ac.uk/teaching/years/msc/courseguide09.html#exam

Infomax vs PCA

In this assignment we analyse ways information transmission in linear networks. We assume that the two-dimensional input \mathbf{u} is a Gaussian distributed signal with correlation matrix $\begin{pmatrix} 1 & q \\ q & 1 \end{pmatrix}$ with q > 0 and zero mean. The output of the network is given by $\mathbf{v} = W\mathbf{u} + \mathbf{n}$, where \mathbf{n} is independent Gaussian noise with variance σ^2 . The weight matrix $W = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix}$ is constrained such that $w_{k1}^2 + w_{k2}^2 = 1$ for k = 1, 2.

- Question 1: We first analyse Linkers's approach to maximize information transmission between \mathbf{u} and \mathbf{v} (see lecture notes). Give an expression for $H(\mathbf{v})$. Express the determinant of the correlation matrix of \mathbf{v} so that it contains two terms: one that is independent of σ and a σ -dependent part.
- Question 2: Calculate the information in the limit $\sigma \to 0$, when W = I (the identity matrix).
- **Question 3:** Show that in the limit $\sigma \to \infty$, $W = 1/\sqrt{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ maximizes the information.
- Question 4: Suppose that network instead performs PCA, projecting the input onto the (only) two principal components. What is W in that case? How much information does the PCA solution transmit in the $\sigma \to 0$ limit? Compare to the above results.
- **Question 5:** Plot the mutual information as a function of σ^2 for W = I, $W = 1/\sqrt{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, and the PCA solution for q = 1/2.