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Learning and memoa 1
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« Computational models
(of unsupervised learning)



Testing animal memory

(Classical) conditioning
Pavlov's dog
Aplysia qgill reflex

Mazes and environments for rodents
water maze
place avoidance
fear
food location



More reading

Reviews of experimental LTP:
- Kandel and Schwartz book
- Hippocampus book

Theory of Hopfield networks and Backpropagation
- Herz, Krogh and Palmer

Neural computation theory
- Dayan & Abbott
- Trappenberg



Priming
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Think of a zoo...



Priming
e ————

Think of a zoo....

Now think of words starting with ‘T’



Priming
e ————

Think of a hospital....

Now think of words starting with ‘T’






Measuring memory:
Classical conditioning




Measuring memory:

Classical conditioning
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Measuring memory:
Classical conditioning

Spontanecus
Recovery

Extinction

Acquisition

Drops of saliva
T2
]
|

Functional perspective



Measuring memory:
Inhibitory avoidance

24h




Measuring memory:
Inhibitory avoidance




Measuring memory:
Instrumental conditioning

7

Reward dependent on action.
Which action?



Human memory systems >

I
Psychologists (e.g. Tulvin 1972) have split up memory in:

Working memory (likely activity based)

Non-declarative memory
Motor skills, sensory, priming, emotional, procedural...

Declarative memory
* Episodic memory
- recollection memory/familiarity
* Semantic memory: General facts about the world

Are there specific brain regions for each?



Measuring memory:
perceptual learning

20 20 <0

placabo amphetamine memanting
=18 n=18
1.8 1 18 1.8 1
Py
C > 18 1 . 18 1.6 1
4
Q —
o 2 14 14 141
C
— Q@
LL On 1.2 1 1.2 1 1.2 1

pre  post

Humans [Dinse ‘03]



Episodic memory .
I
* Episodic memory: what, where, when?
* Can link things that are not naturally linked
* Hippocampus (or Medial Temporal Lobe) based.
 Has been modeled as Hopfield network
» Patient H.M.
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Semantic memory

e Statistical information about the world.
e Stored in neocortex

* Localized cortical lesions can lead to I|m|ted dysfunction
(e.g. speech, faces,...)

* H.M. showed
-normal priming,
-skill, grammar and motor learning V
-liked doing cross-words(!)

 What is Hippocampus (or MTL) responsible for:
explicit (vs implicit) memory?
episodic (vs semantic) memory?
relational memory?
relational processing [Eichenbaum]?



Semantic memory
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[Frankland, Bontempi - Nature Review Neuroscience, 2005]

* HM did have remote memories. How can that be?
* During systems consolidation, memory is transferred/copied
from hippocampus to cortex. During sleep?

* Is long-term memory only cortical, or is there still a
hippocampal component?

* [t is possible to store information in cortex without HPC,
but typically more slowly.



Episodic memory
Recollection vs. Familiarity

Recollection Familiarity memory
Example: remember where, when.. Example: faces, pictures
Low capacity High capacity

Hippocampus dependent Spared with HC-lesions
Asymmetric ROC (binary) Symmetric ROC (confidence)

Long lasting Short lasting



Episodic memory
Recollection vs. Familiarity
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Conditional Likelihood

Perceived Strength

Parahippocampal/
Puutr‘?'rlml cortex

Ferirhinal Cortex

Familiarity memory appears
located in
Peri-rhinal cortex



Familiarity memory

* High capacity (~N?) [Bogazc], |
cf Hopfield (~N) - — New

* Use scenario 1:
If something is not familiar,
don’t even bother remembering.

distance

e Use scenario 2: update cycles

Search for novelty (exploitation) _
Combined model

- Bloom-filter in software (cache system)  LCGreve &MvR 03]



Memory systems

Declarative memory \
* Episodic memory
- recollection
- familiarity
- hippocampus (patient HM) All done with
> Synaptic
* Semantic memory: General facts plasticity ?

Non-declarative memory
Motor skills, sensory processing, ...

_/




Measuring Episodic and Semantic memory:
Mazes

Before learning After learning

If start point is not varied,
can be learned with procedural learning (without HPC)



Measuring memory:
Mazes

Toroidal
projection
screen




Measuring memory:
Object-place tasks

@ JYR




Models of memory
27



Correlation-based learning
28

* [James 1898] Objects once experienced together tend to be-
come associated in the imagination, so that when any one of
them is thought of, the others are likely to be thought of also, in
the same order of sequence or coexistence as before.

* [Hebb 1949] Let us assume that the persistence or repetition of
a reverberatory activity (or ‘trace’) tends to induce lasting cellu-
lar changes that add to its stability ... When an axon of cell A is
near enough to excite A cell B and repeatedly or persistently
takes part in firing it, some growth Process or metabolic change
takes place in one or both cells such that A’s efficacy, as one of
the cells firing B is increased.

» [Schatz] What fires together, wires together.



Phenomenology of

sxnaBtic Blasticitx 29



Hippocampus

¢+ Essential for
declarative memory

¢ cylindrical structure
¢ longitudinal axis
surrounds thalamus
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Schatter collateral L'TP (in vitro)
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Long term synaptic plasticity

34

What is (activity dependent, long term) synaptic plasticity?

Long term, semi-permanent changes in the synaptic
efficacy, induced by neural activity.

In contrast to:
- development
- short term changes
- excitability changes
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Biophysics of LTP .



LTP stages

36

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx
/ﬁhcmn
potential

Ca®"
}ﬁ\‘ Synaptic vesicle
% /
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ca-i)@@ :
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Expression / maintenance phases:
- Early LTP
- Late LTP

_ Receptors
Postsynaptic for re-uptake
membrane of transmitter



Model for LTP induction
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Magnesium block
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APS5 1s a selective blocker
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Ca hypothesis

LTD
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Spike Timing Dependent Plasticity:
Exeerimental data 42
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LTP stages

43

Induction:
- Requires pre- and postsynaptic activity.
- Mechanism: NMDA and Ca influx

Action
potential

- Early LTP (1 hr): gl
- partly pre-synaptic changes \}\‘
- AMPAR phosphorylation }\ .
- AMPAR insertion

-Late LTP
-7 (requires protein synthesi

Expression / maintenance phases: /

Synaptic vesicle
/
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_ Receptors
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“Post-" model for expression




Changes in AMPA
receptor phosphorilation 45
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Early phase LTP
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Associativity

47
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| LTP
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Weak stim. | Weak stim. Associative LTP
no LTP | paired with strong

- Can be explained with voltage dependence of NMDA
- Associative learning such as Classical conditioning (Pavlov)



Early phase LTP
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Late LTP
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Late phase LTP
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LTP stages

51

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Action
potential

- Early LTP (1 hr): gl
- partly pre-synaptic changes \}\‘
- AMPAR phosphorylation }\ .
- AMPAR insertion

-Late phase LTP
-requires protein synthesis —_~

Expression and Maintenance phases: /

Synaptic vesicle

/
I@ é& g{}hﬁq st
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_ Receptors
Postsynaptic for re-uptake
membrane of transmitter



Longevity: In vivo physiology

a 20 40 GO
Time (days post-HFS)

[Abraham '00]

e Strong extracellular stimulation, leads to long lasting
strengthening of synapse [Bliss and Lomo '73]
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What determines if LTP lasts?

Stimulus protocol

% stable LTP
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[Abraham '00]
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(Dopamine mediated)

Does a novel environment
'reset’ hippocampal learning?



What determines if LTP lasts?

Reward and punishment
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Hypotheses for long term stability

Slots for AMPA receptors GluR2 trafficking
basal condition LTP maintenance
AMPAR pool
B Y.
mﬁ:EF )N‘F&F
PKMC
---.T___..PKM;mFIMA

[Turrigiano '02] [Yao & Sacktor '08]



Late LTP maintenance
as an active process
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Hypotheses for maintaince /

Iong term stabilitx 57

Slots for AMPA receptors GluR2 trafficking
basal condition LTP maintenance
AMPAR pool
B Y.
mﬁ:EF )N‘F&F
PKMC
---.T___..PKM;mFIMA

[Turrigiano '02] [Yao & Sacktor '08]



Stable memory despite changes

h Same-day decoding Tirme-lapse decoding
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Synaptic plasticity = memory?

*Detectability
changes in behaviour and synaptic efficacy should be correlated
Yes

*Mimicry
change synaptic efficacies - new ‘apparent’ memory
Not quite yet...

Anterograde alteration
prevent synaptic plasticity - anterograde amnesia
Yes (e.g. NMDA block)

*Retrograde alteration
alter synaptic efficacies - retrograde amnesia
Yes, but...

[Martin, Greenwood, Morris]



Synaptic plasticity = memory?
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Synaptic plasticity=memory?
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False memories

Basal Memory Molecular
Level Formation Labeling Activation
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[Tonegawa review 2010]



Spine plasticity
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Blue light

Spine
Spine enlargement

formation

-,

Rotarod training

[Hayashi-Takagi et al., 2015]






Why modelling plasticity

Why modeling plasticity: 2 cross-fertilizing approaches
1) Artificial neural networks, engineering approach
- make a network do something
- now somewhat superseded by more formal
machine learning
2) Insight in biology
- extrapolate single neuron plasticity to network level

- how can organisms adapt?



Models of plasticity and memory

67

Supervised learning
- tell network exactly what desired output is
- train network by changing the weights

Reinforcement learning
- Only give reward/punishment

Unsupervised learning

- Let the network discover things (statistics)
about the input, e.qg. Create representations that are
useful for further processing (V1)

Animals can do all three presumably



Modeling classical conditioning

Before After

conditioned stimulus M[L e _/\

Bell

unconditioned stimulus —3 j\
— |

Food Q{)

‘Saliva’-neuron NB: just a
cartoon!




Modeling classical conditioning
69

Rescorla-Wagner (delta-rule)

Reward prediction model: A
(/

0

— 6.172'5

r—y

Learn until r=y.



Modeling classical conditioning
70

Rescorla-Wagner (delta-rule)

Reward prediction model:
P sz — 6332'5
O0=1r—1
For instance describes blocking:
(1) First conditioning i
A Reward A Reward A -
<) - A <)) — ﬂ; )
{2) Second conditioning ’
AX Reward AX Reward X )
Q- s 0 - o

Lacks temporal effects
[Dayan and Abbott book]



Supervised: Perceptron

Categorize inputs into two classes

20

L
(s

b

Height
@()

Qioy

y:(b(zwl'xi)

(after Humphrys)

Perceptron learning rule [Rosenblatt 1952]
- If it can be learned, the rule converges
- Not all classification problems can be learned



Linear separability .
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Perceptron can classify Perceptron can't classify

Need multiple layers



Multi-layer perceptron

Network to approximate any function with arbitrary
number of inputs and outputs

output units

hidden units

input units




Back propagation

E= —out )2

Z pattern (Outactual desired
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Back propagation .

General approach:

- Come up with cost function, (objective function)
Examples: #errors, sparseness, invariances

- Take the derivative wrt synaptic weights.

- You have created a learning rule



Hopfield network

- Model for CA3
- Recurrent network
- Auto-associator (i.e. Pattern completion)

| | |
] R ‘L
]
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Qz, A A A




Hopfield network

attractor basin

energy

atitractor state
il

One shot learning: wij-zzpaﬂems



Phenomenological
models of plasticity (unsupervised):

Vanilla model: AWZ-ZEXZ-J’

Covariance rule: AWI:E(X,—<X,>).(y—<y>)

Assumptions made:

- W can change sign

- W Is unbounded

- dw independent of w

- linear

- dw Iindependent of other synapses
- changes are gradual and small




Unsupervised learning

Awi=<€xiy>

Aw.=e <xl. Zj W xj> (slow, linear)

Aw.= A(x.x.)w.
w. EZJ <xlxj>wj
Awi_EQijW .

0w (1) ]
wit) . o

A\t
PCA S =
w(t)=) [CW e

Diverges
OOPS...




Constraints and competition

Constraints T
Keep each weight within bounds .8}
:;Ef'ﬂ-ﬁ-
Normalization ‘ of
Make sure that ; W. is constant . W1/Wmax

This leads to competition
- Divisive normalization (weak competition)
- Subtractive normalization (strong competition)



Constraints and competition .

The outcome of the learning is strongly determined by
the constraints [Miller & Mackay]
(Alternatives: BCM, Oja's rule)

Practical tip:

Use subtractive normalization



Formation of V1 receptive fields

FNREZE
R 7 W

* A wide class of learning rules lead to V1 like receptive fields
[Britto & Gerstner '16]

 Lateral inhibition ensures complimentary RFs [Dayan and
Abbott book]

* Unless lateral interaction, there will be no map.

Sparse coding [Olshausen &Field]
ICA [Bell & Sejnowski]



Map formation

83

XY, tree shrew ! OR, macaque > OD, macaque * DR, ferret *
s SN AR by werd iy nsop b
L]

Model

) il = ri.
X,Y, LISSOM’ OR, LISSOM ’ OD, LISSOM”’ DR, LISSOM’
[Bednar, 2012]
Rate-based Hebbian learning, subtractive normalization

Simple learning rules, can lead to realistic maps.




Higher visual areas

A Operations in Linear-Nanlinear Layer Behavioral Tasks
= e.g Trees ws non-Trees
T,
D e | :I—- —-@ L.
o,
Flier Thrashold  Fodl  Normatize o

e
Spatial Convoiution
aver image nput

MMWWM
-= - - S

Maural Racordings from IT and v4
~ l J

V4 and IT “match” machine learning [Yamins 2014]



Unsupervised learning

FPNOEZE

V1 (1997)

IT [Le ... Ng, 2012]

Development of realistic receptive fields
using generative models.






