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Neural Computation: 
Learning and memory 

Table of contents:

● Various types of memory
● How to measure types of memory
● Biophysics of LTP and LTD
● Computational models

(of unsupervised learning)
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Testing animal memory

(Classical) conditioning 
Pavlov's dog
Aplysia gill reflex

Mazes and environments for rodents 
water maze
place avoidance
fear
food location
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More reading

Reviews of experimental LTP:
- Kandel and Schwartz book
- Hippocampus book

Theory of Hopfield networks and Backpropagation
- Herz, Krogh and Palmer

Neural computation theory
- Dayan & Abbott
- Trappenberg
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Priming

Think of a zoo...
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Priming

Think of a zoo….

Now think of words starting with ‘T’
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Priming

Think of a hospital….

Now think of words starting with ‘T’
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Bell

Measuring memory: 
Classical conditioning
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Bell

Measuring memory: 
Classical conditioning
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Measuring memory: 
Classical conditioning

Functional perspective
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Measuring memory:
Inhibitory avoidance
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Measuring memory:
Inhibitory avoidance
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Measuring memory: 
Instrumental conditioning

Reward dependent on action.
Which action?



14

  

Human memory systems

Psychologists (e.g. Tulvin 1972) have split up memory in:

Working memory (likely activity based)

Non-declarative memory 
Motor skills, sensory, priming, emotional, procedural... 

Declarative memory 
* Episodic memory 

- recollection memory/familiarity
* Semantic memory: General facts about the world

Are there specific brain regions for each?
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Measuring memory: 
perceptual learning

Humans [Dinse ‘03]
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Episodic memory

● Episodic memory: what, where, when?

● Can link things that are not naturally linked

● Hippocampus (or Medial Temporal Lobe) based.

● Has been modeled as Hopfield network

● Patient H.M.
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Medial temporal lobe
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Semantic memory

● Statistical information about the world.

● Stored in neocortex

● Localized cortical lesions can lead to limited dysfunction
(e.g. speech, faces,…)

● H.M. showed 
-normal priming, 
-skill, grammar and motor learning
-liked doing cross-words(!)

● What is Hippocampus (or MTL) responsible for:
explicit (vs implicit) memory?
episodic (vs semantic) memory?
relational memory?
relational processing [Eichenbaum]?
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Semantic memory

● HM did have remote memories. How can that be?
● During systems consolidation, memory is transferred/copied

from hippocampus to cortex. During sleep?
● Is long-term memory only cortical, or is there still a 

hippocampal component?
● It is possible to store information in cortex without HPC,

but typically more slowly.
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Episodic memory
Recollection vs. Familiarity

Recollection

Example: remember where, when..

Low capacity

Hippocampus dependent

Asymmetric ROC (binary)

Long lasting

Familiarity memory

Example: faces, pictures

High capacity 

Spared with HC-lesions

Symmetric ROC (confidence) 

Short lasting
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Episodic memory
Recollection vs. Familiarity

Familiarity memory appears
located in 
Peri-rhinal cortex 

[Fortin & Eichenbaum]



22

  

Familiarity memory

Combined model
[Greve &MvR 09] 

● High capacity (~N2) [Bogazc],
cf Hopfield (~N) 

● Use scenario 1:
If something is not familiar,
don’t even bother remembering.

● Use scenario 2:
Search for novelty (exploitation)

● Bloom-filter in software (cache system)
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Memory systems

Declarative memory 
* Episodic memory 

- recollection
- familiarity
- hippocampus (patient HM)

* Semantic memory: General facts 

Non-declarative memory 
Motor skills, sensory processing, ... 

All done with
Synaptic
plasticity ?
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Measuring Episodic and Semantic memory: 
Mazes

If start point is not varied, 
can be learned with procedural learning (without HPC)
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Measuring memory: 
Mazes



26

  

Measuring memory: 
Object-place tasks
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Models of memory
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Correlation-based learning

● [James 1898] Objects once experienced together tend to be-
come associated in the imagination, so that when any one of 
them is thought of, the others are likely to be thought of also, in 
the same order of sequence or coexistence as before. 

● [Hebb 1949] Let us assume that the persistence or repetition of 
a reverberatory activity (or ‘trace’) tends to induce lasting cellu-
lar changes that add to its stability … When an axon of cell A is 
near enough to excite A cell B and repeatedly or persistently 
takes part in fring it, some growth Process or metabolic change 
takes place in one or both cells such that A’s efcacy, as one of 
the cells fring B is increased.

● [Schatz] What fres together, wires together.
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Phenomenology of 
synaptic plasticity





Diagram: Kit Longden
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Long term synaptic plasticity

What is (activity dependent, long term) synaptic plasticity?

Long term, semi-permanent changes in the synaptic
efficacy, induced by neural activity.

In contrast to:
- development
- short term changes 
- excitability changes
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Biophysics of LTP
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LTP stages

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression / maintenance phases:
- Early LTP
- Late LTP 
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AP5 blocks learning
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Ca hypothesis

LTP LTD

Pairing high pre- and post synaptic activity => LTP
Pairing with low activity =>  Long term depression

[O'Connor & Wang '05][Bliss & Lomo '73]
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Spike Timing Dependent Plasticity: 
Experimental data

[Bi & Poo 1998] 
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LTP stages

Induction:
- Requires pre- and postsynaptic activity.
- Mechanism: NMDA and Ca influx

Expression / maintenance phases:
- Early LTP (1 hr): 

- partly pre-synaptic changes
- AMPAR phosphorylation
- AMPAR insertion

-Late LTP 
-? (requires protein synthesis)
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Changes in AMPA 
receptor phosphorilation

[Whitlock,
.. and Bear '06]
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Early phase LTP

Rapid and local
change

Stim.:
1 s @ 100Hz

CaMKII
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Associativity

Too 
weak

LTP
inducing

Weak stim.
no LTP

Weak stim.
paired with strong

Associative LTP

- Can be explained with voltage dependence of NMDA

- Associative learning such as Classical conditioning (Pavlov)
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Early phase LTP

But gone
after few hours

Rapid and local
change

Stim.:
1 s @ 100Hz
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Late LTP 
requires protein synthesis

[Fonseca et al 06]
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Late phase LTP

PRPs

)

Dopa
mine

Stim:
3x 1s @100Hz

Start protein
synthesis

LTP lastsShip PRPs to 
tagged synapses
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LTP stages

Induction:
- Requires pre- and post synaptic activity.
- Mechanism: NMDA and Ca influx

Expression  and Maintenance phases:
- Early LTP (1 hr): 

- partly pre-synaptic changes
- AMPAR phosphorylation
- AMPAR insertion

-Late phase LTP 
-requires protein synthesis
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Longevity: In vivo physiology

● Strong extracellular stimulation, leads to long lasting 
strengthening of synapse [Bliss and Lomo '73]

[Abraham '00]
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What determines if LTP lasts?

[Abraham '02, Li & Rowan '00]
(Dopamine mediated)
Does a novel environment 
'reset'  hippocampal learning?

[Abraham '00]

Stimulus protocol Environment
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What determines if LTP lasts?

[Seidenbecher '95]

Reward and punishment
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Hypotheses for long term stability

[Yao & Sacktor '08]

GluR2 traffickingSlots for AMPA receptors

[Turrigiano  '02]
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Late LTP maintenance 
as an active process

ZIP disrupts one month old memory [Pastalkova et al '06]

[movie demo]
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Hypotheses for maintaince /
long term stability

[Yao & Sacktor '08]

GluR2 traffickingSlots for AMPA receptors

[Turrigiano  '02]
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Stable memory despite changes

[Ziv et al 2013]
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Synaptic plasticity = memory?

●Detectability
changes in behaviour and synaptic efcacy should be correlated
Yes

●Mimicry
change synaptic efcacies → new ‘apparent’ memory
Not quite yet...

●Anterograde alteration 
prevent synaptic plasticity → anterograde amnesia
Yes (e.g. NMDA block)

●Retrograde alteration 
alter synaptic efcacies → retrograde amnesia
Yes, but...

[Martin, Greenwood, Morris]
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Synaptic plasticity = memory?

[Martin, Greenwood, Morris]
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Synaptic plasticity=memory?

[Whitlock,.. and Bear '06]
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False memories

[Tonegawa review 2010]
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Spine plasticity

Yu Zuo Curr Opin Neurobiol (2010)
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[Hayashi-Takagi et al., 2015]



65

  

Learning
models
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Why modelling plasticity 

Why modeling plasticity: 2 cross-fertilizing approaches

1) Artificial neural networks, engineering approach

- make a network do something

- now somewhat superseded by more formal

   machine learning

2) Insight in biology

- extrapolate single neuron plasticity to network level 

- how can organisms adapt?
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Models of plasticity and memory

Supervised learning
- tell network exactly what desired output is
- train network by changing the weights

Reinforcement learning
- Only give reward/punishment 

Unsupervised learning
- Let the network discover things (statistics) 
  about the input, e.g. Create representations that are
  useful for further processing (V1)

Animals can do all three presumably
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Bell

‘Saliva’-neuron

Food

NB: just a 
cartoon!

Modeling classical conditioning
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Modeling classical conditioning

Rescorla-Wagner (delta-rule)

Reward prediction model:

Learn until r=y.
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Modeling classical conditioning

Rescorla-Wagner (delta-rule)

Reward prediction model:

For instance describes blocking:

Lacks temporal effects
[Dayan and Abbott book]
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Supervised: Perceptron

Categorize inputs into two classes

Perceptron learning rule [Rosenblatt 1952]
- If it can be learned, the rule converges
- Not all classification problems can be learned

y= ∑w
i
x
i

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Linear separability

Separable
Perceptron can classify 

Non-separable
Perceptron can't classify 
Need multiple layers

Extra
chair
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Multi-layer perceptron

Network to approximate any function with arbitrary 
number of inputs and outputs
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Back propagation
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Back propagation

General approach: 

- Come up with cost function, (objective function)
  Examples: #errors, sparseness, invariances

- Take the derivative wrt synaptic weights.

- You have created a learning rule
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Hopfield network

- Model for CA3
- Recurrent network
- Auto-associator (i.e. Pattern completion)
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Hopfield network

One shot learning: wij=∑ patterns
x
i
 x

j

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Phenomenological 
models of plasticity (unsupervised)

 w
i
= x

i
yVanilla model:

Covariance rule: 

Assumptions made:
- w can change sign
- w is unbounded
- dw independent of w
- linear
- dw independent of other synapses
- changes are gradual and small

w i= x i−〈x i〉 .y−〈y 〉 
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Unsupervised learning
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Constraints and competition

Normalization

Make sure that                is constant

This leads to competition

- Divisive normalization (weak competition)

- Subtractive normalization (strong competition)

∑i
w
i

Constraints
Keep each weight within bounds
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Constraints and competition

The outcome of the learning is strongly determined by 
the constraints [Miller & Mackay]
(Alternatives: BCM, Oja's rule)

Practical tip:

Use subtractive normalization
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Formation of V1 receptive fields

● A wide class of learning rules lead to V1 like receptive fields 
[Britto & Gerstner '16]
● Lateral inhibition ensures complimentary RFs [Dayan and 
Abbott book]
● Unless lateral interaction, there will be no map.

Sparse coding [Olshausen &Field]
ICA [Bell & Sejnowski]
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Map formation

Rate-based Hebbian learning, subtractive normalization
Simple learning rules, can lead to realistic maps. 

[Bednar, 2012]

Data

Model
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Higher visual areas

V4 and IT “match” machine learning [Yamins 2014]
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Unsupervised learning

Development of realistic receptive fields 
using generative models.

V1 (1997)

IT [Le … Ng, 2012]
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