
Chapter 2

Neural Encoding II: Reverse
Correlation and Visual
Receptive Fields

2.1 Introduction

The spike-triggered average stimulus introduced in chapter 1 is a stan-
dard way of characterizing the selectivity of a neuron. In this chapter,
we show how spike-triggered averages and reverse-correlation techniques
can be used to construct estimates of firing rates evoked by arbitrary
time-dependent stimuli. Firing rates calculated directly from reverse-
correlation functions provide only a linear estimate of the response of a
neuron, but we also present in this chapter various methods for including
nonlinear effects such as firing thresholds.

Spike-triggered averages and reverse-correlation techniques have been retina
LGN

V1, area 17
used extensively to study properties of visually responsive neurons in the
retina (retinal ganglion cells), lateral geniculate nucleus (LGN), and pri-
mary visual cortex (V1, or area 17 in the cat). At these early stages of
visual processing, the responses of some neurons (simple cells in primary
visual cortex, for example) can be described quite accurately using this
approach. Other neurons (complex cells in primary visual cortex, for ex-
ample) can be described by extending the formalism. Reverse-correlation
techniques have also been applied to responses of neurons in visual areas
V2, area 18, and MT, but they generally fail to capture the more complex
and nonlinear features typical of responses at later stages of the visual
system. Descriptions of visual responses based on reverse correlation are
approximate, and they do not explain how visual responses arise from
the synaptic, cellular, and network properties of retinal, LGN, and cortical
circuits. Nevertheless, they provide a important framework for character-
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2 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

izing response selectivities, a reference point for identifying and charac-
terizing novel effects, and a basis for building mechanistic models, some
of which are discussed at the end of this chapter and in chapter 7.

2.2 Estimating Firing Rates

In chapter 1, we discussed a simple model in which firing rates were esti-
mated as instantaneous functions of the stimulus, using response tuning
curves. The activity of a neuron at time t typically depends on the be-
havior of the stimulus over a period of time starting a few hundred mil-
liseconds prior to t and ending perhaps tens of milliseconds before t. Re-
verse correlation methods can be used to construct a more accurate model
that includes the effects of the stimulus over such an extended period of
time. The basic problem is to construct an estimate rest(t) of the firing rate
r(t) evoked by a stimulus s(t). The simplest way to construct an estimate
is to assume that the firing rate at any given time can be expressed as a
weighted sum of the values taken by the stimulus at earlier times. Since
time is a continuous variable this ‘sum’ actually takes the form of an inte-firing rate

estimate rest(t) gral, and we write

rest(t) = r0 +
∫ ∞

0
dτ D(τ)s(t − τ) . (2.1)

The term r0 accounts for any background firing that may occur when s = 0.
D(τ) is a weighting factor that determines how strongly, and with what
sign, the value of the stimulus at time t − τ affects the firing rate at time t.
Note that the integral in equation 2.1 is a linear filter of the same form as
the expressions used to compute rapprox(t) in chapter 1.

As discussed in chapter 1, sensory systems tend to adapt to the absolute
intensity of a stimulus. It is easier to account for the responses to fluctu-
ations of a stimulus around some mean background level than it is is to
account for adaptation processes. We therefore assume throughout this
chapter that the stimulus parameter s(t) has been defined with its mean
value subtracted out. This means that the time integral of s(t) over the
duration of a trial is zero.

We have provided a heuristic justification for the terms in equation 2.1
but, more formally, they correspond to the first two terms in a systematic
expansion of the response in powers of the stimulus. Such an expansion
is the functional equivalent of the Taylor series expansion used to gener-
ate power series approximations of functions, and it is called the Volterra
expansion. For the case we are considering, it takes the formVolterra expansion

rest(t) = r0 +
∫

dτ D(τ)s(t − τ) +
∫

dτ1dτ2 D2(τ1, τ2)s(t − τ1)s(t − τ2) +∫
dτ1dτ2dτ3 D3(τ1, τ2, τ3)s(t − τ1)s(t − τ2)s(t − τ3) + . . . . (2.2)
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2.2 Estimating Firing Rates 3

This series was rearranged by Wiener to make the terms easier to compute.
The first two terms of the Volterra and Wiener expansions are identical Wiener expansion
and are given by the two expressions on the right side of equation 2.1. For
this reason, D is called the first Wiener kernel, the linear kernel, or, when Wiener kernel
higher-order terms (terms involving more than one factor of the stimulus)
are not being considered, simply the kernel.

To construct an estimate of the firing rate based on an expression of the
form 2.1, we choose the kernel D to minimize the squared difference be-
tween the estimated response to a stimulus and the actual measured re-
sponse averaged over time,

E = 1
T

∫ T

0
dt (rest(t) − r(t))2 . (2.3)

This expression can be minimized by setting its derivative with respect
to the function D to zero (see appendix A). The result is that D satisfies
an equation involving two quantities introduced in chapter 1, the firing
rate-stimulus correlation function, Qrs(τ) = ∫

dt r(t) s(t + τ)/T, and the
stimulus autocorrelation function, Qss(τ) = ∫

dt s(t) s(t + τ)/T, optimal kernel∫ ∞

0
dτ′ Qss(τ − τ′)D(τ′) = Qrs(−τ) . (2.4)

The method we are describing is called reverse correlation because the fir-
ing rate–stimulus correlation function is evaluated at −τ in this equation.

Equation 2.4 can be solved most easily if the stimulus is white noise, al-
though it can be solved in the general case as well (see appendix A). For
a white-noise stimulus Qss(τ) = σ2

s δ(τ) (see chapter 1), so the left side of
equation 2.4 is

σ2
s

∫ ∞

0
dτ′ δ(τ − τ′)D(τ′) = σ2

s D(τ) . (2.5)

As a result, the kernel that provides the best linear estimate of the firing
rate is white-noise kernel

D(τ) = Qrs(−τ)

σ2
s

= 〈r〉C(τ)

σ2
s

(2.6)

where C(τ) is the spike-triggered average stimulus, and 〈r〉 is the aver-
age firing rate of the neuron. For the second equality, we have used the
relation Qrs(−τ)=〈r〉C(τ) from chapter 1. Based on this result, the stan-
dard method used to determine the optimal kernel is to measure the spike-
triggered average stimulus in response to a white-noise stimulus.

In chapter 1, we introduce the H1 neuron of the fly visual system, which
responds to moving images. Figure 2.1 shows a prediction of the firing
rate of this neuron obtained from a linear filter. The velocity of the mov-
ing image is plotted in 2.1A, and two typical responses are shown in 2.1B.
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4 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

The firing rate predicted from a linear estimator, as discussed above, and
the firing rate computed from the data by binning and counting spikes
are compared in Figure 2.1C. The agreement is good in regions where
the measured rate varies slowly but the estimate fails to capture high-
frequency fluctuations of the firing rate, presumably because of nonlin-
ear effects not captured by the linear kernel. Some such effects can be
described by a static nonlinear function, as discussed below. Others may
require including higher-order terms in a Volterra or Wiener expansion.
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Figure 2.1: Prediction of the firing rate for an H1 neuron responding to a moving
visual image. A) The velocity of the image used to stimulate the neuron. B) Two of
the 100 spike sequences used in this experiment. C) Comparison of the measured
and computed firing rates. The dashed line is the firing rate extracted directly
from the spike trains. The solid line is an estimate of the firing rate constructed by
linearly filtering the stimulus with an optimal kernel. (Adapted from Rieke et al.,
1997.)

The Most Effective Stimulus

Neuronal selectivity is often characterized by describing stimuli that evoke
maximal responses. The reverse-correlation approach provides a justifica-
tion for this procedure by relating the optimal kernel for firing rate estima-
tion to the stimulus predicted to evoke the maximum firing rate, subject
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2.2 Estimating Firing Rates 5

to a constraint. A constraint is essential because the linear estimate 2.1 is
unbounded. The constraint we use is that the time integral of the square of
the stimulus over the duration of the trial is held fixed. We call this integral
the stimulus energy. The stimulus for which equation 2.1 predicts the max-
imum response at some fixed time subject to this constraint, is computed
in appendix B. The result is that the stimulus producing the maximum re-
sponse is proportional to the optimal linear kernel, or equivalently to the
white-noise spike-triggered average stimulus. This is an important result
because in cases where a white-noise analysis has not been done, we may
still have some idea what stimulus produces the maximum response.

The maximum stimulus analysis provides an intuitive interpretation of
the linear estimate of equation 2.1. At fixed stimulus energy, the integral
in 2.1 measures the overlap between the actual stimulus and the most ef-
fective stimulus. In other words, it indicates how well the actual stimulus
matches the most effective stimulus. Mismatches between these two re-
duce the value of the integral and result in lower predictions for the firing
rate.

Static Nonlinearities

The optimal kernel produces an estimate of the firing rate that is a linear
function of the stimulus. Neurons and nervous systems are nonlinear, so
a linear estimate is only an approximation, albeit a useful one. The lin-
ear prediction has two obvious problems: there is nothing to prevent the
predicted firing rate from becoming negative, and the predicted rate does
not saturate, but instead increases without bound as the magnitude of the
stimulus increases. One way to deal with these and some of the other de-
ficiencies of a linear prediction is to write the firing rate as a background
rate plus a nonlinear function of the linearly filtered stimulus. We use L to
represent the linear term we have been discussing thus far,

L(t) =
∫ ∞

0
dτD(τ)s(t − τ) . (2.7)

The modification is to replace the linear prediction rest(t) = r0 + L(t) by the rest(t) with static
nonlinearitygeneralization

rest(t) = r0 + F(L(t)) (2.8)

where F is an arbitrary function. F is called a static nonlinearity to stress
that it is a function of the linear filter value evaluated instantaneously at
the time of the rate estimation. If F is appropriately bounded from above
and below, the estimated firing rate will never be negative or unrealisti-
cally large.

F can be extracted from data by means of the graphical procedure illus-
trated in figure 2.2A. First, a linear estimate of the firing rate is computed
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6 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

using the optimal kernel defined by equation 2.4. Next a plot is made
of the pairs of points (L(t), r(t)) at various times and for various stimuli,
where r(t) is the actual rate extracted from the data. There will be a certain
amount of scatter in this plot due to the inaccuracy of the estimation. If
the scatter is not too large, however, the points should fall along a curve,
and this curve is a plot of the function F(L). It can be extracted by fitting
a function to the points on the scatter plot. The function F typically con-

100

80

60

40

20

0

r 
( 

  
)

H
z

543210

L

100

80

60

40

20

0
F 

(H
z)

543210

L

 Eq. 2.9
 

 Eq. 2.10
 

 Eq. 2.11

A B

Figure 2.2: A) A graphical procedure for determining static nonlinearities. The
linear estimate L and the actual firing rate r are plotted (solid points) and fit by
the function F(L) (solid line). B) Different static nonlinearities used in estimating
neural responses. L is dimensionless, and equations 2.9, 2.10, and 2.10 have been
used with G = 25 Hz, L0 = 1, L1/2 = 3, rmax = 100 Hz, g1 = 2, and g2 = 1/2.

tains constants used to set the firing rate to realistic values. These give us
the freedom to normalize D(τ) in some convenient way, correcting for the
arbitrary normalization by adjusting the parameters within F.

Static nonlinearities are used to introduce both firing thresholds and satu-
ration into estimates of neural responses. Thresholds can be described bythreshold function
writing

F(L) = G[L − L0]+ (2.9)

where L0 is the threshold value that L must attain before firing begins.
Above the threshold, the firing rate is a linear function of L, with G acting
as the constant of proportionality. Half-wave rectification is a special caserectification
of this with L0 =0. That this function does not saturate is not a problem if
large stimulus values are avoided. If needed, a saturating nonlinearity can
be included in F, and a sigmoidal function is often used for this purpose,sigmoid function

F(L) = rmax

1 + exp
(
g1(L1/2 − L)

) . (2.10)

Here rmax is the maximum possible firing rate, L1/2 is the value of L for
which F achieves half of this maximal value, and g1 determines how
rapidly the firing rate increases as a function of L. Another choice that
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2.2 Estimating Firing Rates 7

combines a hard threshold with saturation uses a rectified hyperbolic tan-
gent function,

F(L) = rmax[tanh
(
g2(L − L0)

)
]+ (2.11)

where rmax and g2 play similar roles as in equation 2.10, and L0 is the
threshold. Figure 2.2B shows the different nonlinear functions that we
have discussed.

Although the static nonlinearity can be any function, the estimate of equa-
tion 2.8 is still restrictive because it allows for no dependence on weighted
autocorrelations of the stimulus or other higher-order terms in the Volterra
series. Furthermore, once the static nonlinearity is introduced, the linear
kernel derived from equation 2.4 is no longer optimal because it was cho-
sen to minimize the squared error of the linear estimate rest(t) = L(t), not
the estimate with the static nonlinearity rest(t) = F(L(t)). A theorem due
to Bussgang (see appendix C) suggests that equation 2.6 will provide a
reasonable kernel, even in the presence of a static nonlinearity, if the white
noise stimulus used is Gaussian.

In some cases, the linear term of the Volterra series fails to predict the re-
sponse even when static nonlinearities are included. Systematic improve-
ments can be attempted by including more terms in the Volterra or Wiener
series, but in practice it is quite difficult to go beyond the first few terms.
The accuracy with which the first term, or first few terms, in a Volterra
series can predict the responses of a neuron can sometimes be improved
by replacing the parameter s in equation 2.7 by an appropriately chosen
function of s, so that

L(t) =
∫ ∞

0
dτD(τ) f (s(t − τ)) . (2.12)

A reasonable choice for this function is the response tuning curve. With
this choice, the linear prediction is equal to the response tuning curve,
L = f (s), for static stimuli provided that the integral of the kernel D is
equal to one. For time-dependent stimuli, we can think of equation 2.12 as
a dynamic extension of the response tuning curve.

stimulus

Linear Filter Static Nonlinearity Spike Generator

response

L=
R
d�Ds rest= r0+F (L) rest�t

?

> xrand

Figure 2.3: Simulating spiking responses to stimuli. The integral of the stimulus
s times the optimal kernel D is first computed. The estimated firing rate is the
background rate r0 plus a nonlinear function of the output of the linear filter cal-
culation. Finally, the estimated firing rate is used to drive a Poisson process that
generates spikes.
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8 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

A model of the spike trains evoked by a stimulus can be constructed by
using the firing rate estimate of equation 2.8 to drive a Poisson spike gen-
erator (see chapter 1). Figure 2.3 shows the structure of such a model with
a linear filter, a static nonlinearity, and a stochastic spike-generator. In the
figure, spikes are shown being generated by comparing the spiking prob-
ability r(t)
t to a random number, although the other methods discussed
in chapter 1 could be used instead. Also, the linear filter acts directly on
the stimulus s in figure 2.3, but it could act instead on some function f (s)
such as the response tuning curve.

2.3 Introduction to the Early Visual System

Before discussing how reverse correlation methods are applied to visually
responsive neurons, we review the basic anatomy and physiology of the
early stages of the visual system. The conversion of a light stimulus into
an electrical signal and ultimately an action potential sequence occurs in
the retina. Figure 2.4A is an anatomical diagram showing the five prin-
cipal cell types of the retina, and figure 2.4B is a rough circuit diagram.
In the retina, light is first converted into an electrical signal by a photo-
transduction cascade within rod and cone photoreceptor cells. Figure 2.4B
shows intracellular recordings made in neurons of the retina of a mud-
puppy (an amphibian). The stimulus used for these recordings was a flash
of light falling primarily in the region of the photoreceptor at the left of
figure 2.4B. The rod cells, especially the one on the left side of figure 2.4B,
are hyperpolarized by the light flash. This electrical signal is passed along
to bipolar and horizontal cells through synaptic connections. Note that in
one of the bipolar cells, the signal has been inverted leading to depolar-
ization. These smoothly changing membrane potentials provide a graded
representation of the light intensity during the flash. This form of cod-
ing is adequate for signaling within the retina, where distances are small.
However, it is inadequate for the task of conveying information from the
retina to the brain.

The output neurons of the retina are the retinal ganglion cells whose axonsretinal ganglion
cells form the optic nerve. As seen in figure 2.4B, the subthreshold potentials

of the two retinal ganglion cells shown are similar to those of the bipolar
cells immediately above them in the figure, but now with superimposed
action potentials. The two retinal ganglion cells shown in the figure have
different responses and transmit different sequences of action potentials.
G2 fires while the light is on, and G1 fires when it turns off. These are calledON and OFF

responses ON and OFF responses, respectively. The optic nerve conducts the output
spike trains of retinal ganglion cells to the lateral geniculate nucleus of the
thalamus, which acts as a relay station between the retina and primary
visual cortex (figure 2.5). Prior to arriving at the LGN, some retinal gan-
glion cell axons cross the midline at the optic chiasm. This allow the left
and right sides of the visual fields from both eyes to be represented on the
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2.3 Introduction to the Early Visual System 9
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Figure 2.4: A) An anatomical diagram of the circuitry of the retina of a dog. Cell
types are identified at right. In the intact eye, illumination is, counter-intuitively,
from the bottom of this figure. B) Intracellular recordings from retinal neurons of
the mudpuppy responding to flash of light lasting for one second. In the column
of cells on the left side of the diagram, the resulting hyperpolarizations are about
4 mV in the rod and retinal ganglion cells, and 8 mV in the bipolar cell. Pluses
and minuses represent excitatory and inhibitory synapses respectively. (A adapted
from Nicholls et al., 1992; drawing from Cajal, 1911. B data from Werblin and
Dowling 1969; figure adapted from Dowling, 1992.)

right and left sides of the brain respectively (figure 2.5).

Neurons in the retina, LGN, and primary visual cortex respond to light
stimuli in restricted regions of the visual field called their receptive fields.
Patterns of illumination outside the receptive field of a given neuron can-
not generate a response directly, although they can significantly affect re-
sponses to stimuli within the receptive field. We do not consider such ef-
fects, although they are a current focus of experimental and theoretical in-
terest. In the monkey, cortical receptive fields range in size from around a
tenth of a degree near the fovea to several degrees in the periphery. Within
the receptive fields, there are regions where illumination higher than the
background light intensity enhances firing, and other regions where lower
illumination enhances firing. The spatial arrangement of these regions de-
termines the selectivity of the neuron to different inputs. The term recep-
tive field is often generalized to refer not only to the overall region where
light affects neuronal firing, but also to the spatial and temporal structure
within this region.

Visually responsive neurons in the retina, LGN, and primary visual cortex
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10 Neural Encoding II: Reverse Correlation and Visual Receptive Fields
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Figure 2.5: Pathway from the retina through the lateral geniculate nucleus (LGN)
of the thalamus to the primary visual cortex in the human brain. (Adapted from
Nicholls et al., 1992.)

are divided into two classes depending on whether or not the contribu-
tions from different locations within the visual field sum linearly, as as-
sumed in equation 2.24. X-cells in the cat retina and LGN, P-cells in the
monkey retina and LGN, and simple cells in primary visual cortex appear
to satisfy this assumption. Other neurons, such as Y cells in the cat retinasimple and

complex cells and LGN, M cells in the monkey retina and LGN, and complex cells in
primary visual cortex, do not show linear summation across the spatial
receptive field and nonlinearities must be included in descriptions of their
responses. We do this for complex cells later in this chapter.

A first step in studying the selectivity of any neuron is to identify the
types of stimuli that evoke strong responses. Retinal ganglion cells and
LGN neurons have similar selectivities and respond best to circular spots
of light surrounded by darkness or dark spots surrounded by light. In pri-
mary visual cortex, many neurons respond best to elongated light or dark
bars or to boundaries between light and dark regions. Gratings with alter-
nating light and dark bands are effective and frequently used stimuli for
these neurons.

Many visually responsive neurons react strongly to sudden transitions in
the level of image illumination, a temporal analog of their responsiveness
to light-dark spatial boundaries. Static images are not very effective at
evoking visual responses. In awake animals, images are constantly kept
in motion across the retina by eye movements. In experiments in which the
eyes are fixed, moving light bars and gratings, or gratings undergoing pe-
riodic light-dark reversals (called counterphase gratings) are used as more
effective stimuli than static images. Some neurons in primary visual cortex
are directionally selective; they respond more strongly to stimuli moving
in one direction than in the other.
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2.3 Introduction to the Early Visual System 11

To streamline the discussion in this chapter, we consider only greyscale
images, although the methods presented can be extended to include color.
We also restrict the discussion to two-dimensional visual images, ignor-
ing how visual responses depend on viewing distance and encode depth.
In discussing the response properties of retinal, LGN, and V1 neurons,
we do not follow the path of the visual signal, nor the historical order of
experimentation, but, instead, begin with primary visual cortex and then
move back to the LGN and retina. The emphasis is on properties of indi-
vidual neurons, so we do not discuss encoding by populations of visually
responsive neurons. For V1, this has been analyzed in terms of wavelets,
a scheme for decomposing images into component pieces, as discussed in
chapter 10.

The Retinotopic Map

A striking feature of most visual areas in the brain, including primary vi-
sual cortex, is that the visual world is mapped onto the cortical surface in
a topographic manner. This means that neighboring points in a visual im-
age evoke activity in neighboring regions of visual cortex. The retinotopic
map refers to the transformation from the coordinates of the visual world
to the corresponding locations on the cortical surface.

Objects located a fixed distance from one eye lie on a sphere. Locations
on this sphere can be represented using the same longitude and latitude
angles used for the surface of the earth. Typically, the ‘north pole’ for
this spherical coordinate system is located at the fixation point, the image
point that focuses onto the fovea or center of the retina. In this system of
coordinates (figure 2.6), the latitude coordinate is called the eccentricity,
ε, and the longitude coordinate, measured from the horizontal meridian, eccentricity ε

azimuth ais called the azimuth a. In primary visual cortex, the visual world is split
in half, with the region −90◦ ≤ a ≤ +90◦ for ε from 0◦ to about 70◦ (for
both eyes) represented on the left side of the brain, and the reflection of
this region about the vertical meridian represented on the right side of the
brain.

In most experiments, images are displayed on a flat screen (called a tan-
gent screen) that does not coincide exactly with the sphere discussed in the
previous paragraph. However, if the screen is not too large the difference
is negligible, and the eccentricity and azimuth angles approximately coin-
cide with polar coordinates on the screen (figure 2.6A). Ordinary Cartesian
coordinates can also be used to identify points on the screen (figure 2.6).
The eccentricity ε and the x and y coordinates of the Cartesian system are
based on measuring distances on the screen. However, it is customary
to divide these measured distances by the distance from the eye to the
screen and to multiply the result by 180◦/π so that these coordinates are
ultimately expressed in units of degrees. This makes sense because it is
the angular not the absolute size and location of an image that is typically
relevant for studies of the visual system.
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12 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

F

A B

F

a

x
y

a

�

�

Figure 2.6: A) Two coordinate systems used to parameterize image location. Each
rectangle represents a tangent screen, and the filled circle is the location of a par-
ticular image point on the screen. The upper panel shows polar coordinates. The
origin of the coordinate system is the fixation point F, the eccentricity ε is propor-
tional to the radial distance from the fixation point to the image point, and a is the
angle between the radial line from F to the image point and the horizontal axis.
The lower panel shows Cartesian coordinates. The location of the origin for these
coordinates and the orientation of the axes are arbitrary. They are usual chosen to
center and align the coordinate system with respect to a particular receptive field
being studied. B) A bullseye pattern of radial lines of constant azimuth, and circles
of constant eccentricity. The center of this pattern at zero eccentricity is the fixation
point F. Such a pattern was used to generated the image in figure 2.7A.

Figure 2.7A shows a dramatic illustration of the retinotopic map in the
primary visual cortex of a monkey. The pattern on the cortex seen in fig-
ure 2.7A was produced by imaging a radioactive analog of glucose that
was taken up by active neurons while a monkey viewed a visual image
consisting of concentric circles and radial lines, similar to the pattern in
figure 2.6B. The vertical lines correspond to the circles in the image, and
the roughly horizontal lines are due to the activity evoked by the radial
lines. The fovea is represented at the left-most pole of this piece of cortex
and eccentricity increases toward the right. Azimuthal angles are positive
in the lower half of the piece of cortex shown, and negative in the upper
half.

Figure 2.7B is an approximate mathematical description of the map illus-
trated in figure 2.7A. To construct this map we assume that eccentricity
is mapped onto the horizontal coordinate X of the cortical sheet, and a is
mapped onto its Y coordinate. The equations for X and Y as functions
of ε and a can be obtained through knowledge of a quantity called the
cortical magnification factor, M(ε). This determines the distance acrosscortical

magnification
factor

a flattened sheet of cortex separating the activity evoked by two nearby
image points. Suppose that the two image points in question have eccen-
tricities ε and ε+
ε but the same value of the azimuthal coordinate a. The
angular distance between these two points is 
ε. The distance separating
the activity evoked by these two image points on the cortex is 
X. By the
definition of the cortical magnification factor, these two quantities satisfy
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Figure 2.7: A) An autoradiograph of the posterior region of the primary visual
cortex from the left side of a macaque monkey brain. The pattern is a radioactive
trace of the activity evoked by an image like that in figure 2.6B. The vertical lines
correspond to circles at eccentricities of 1◦, 2.3◦, and 5.4◦, and the horizontal lines
(from top to bottom) represent radial lines in the visual image at a values of −90◦,
−45◦, 0◦, 45◦, and 90◦. Only the part of cortex corresponding to the central region
of the visual field on one side is shown. B) The mathematical map from the visual
coordinates ε and a to the cortical coordinates X and Y described by equations 2.15
and 2.17. (A adapted from Tootell et al., 1982.)


X = M(ε)
ε or, taking the limit as 
X and 
ε go to zero,

dX
dε

= M(ε) . (2.13)

The cortical magnification factor for the macaque monkey, obtained from
results such as figure 2.7A is approximately

M(ε) = λ

ε0 + ε
. (2.14)

with λ ≈ 12 mm and ε0 ≈ 1◦. Integrating equation 2.13 and defining X = 0
to be the point representing ε = 0, we find

X = λ ln(1 + ε/ε0) . (2.15)

We can apply the same cortical amplification factor to points with the
same eccentricity but different a values. The angular distance between
two points at eccentricity ε with an azimuthal angle difference of 
a is

aεπ/180◦. In this expression, the factor of ε corrects for the increase of
arc length as a function of eccentricity, and the factor of π/180◦ converts ε

from degrees to radians. The separation on the cortex, 
Y, corresponding
to these points has a magnitude given by the cortical amplification times
this distance. Taking the limit 
a → 0, we find that we find that

dY
da

= − επ

180◦ M(ε) . (2.16)
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14 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

The minus sign in this relationship appears because the visual field is in-
verted on the cortex. Solving equation 2.16 gives

Y = − λεaπ
(ε0 + ε)180◦ . (2.17)

Figure 2.7B shows that these coordinates agree fairly well with the map in
figure 2.7A.

For eccentricities appreciably greater than 1◦, equations 2.15 and 2.17 re-
duce to X ≈ λ ln(ε/ε0) and Y ≈ −λπa/180◦. These two formulae can be
combined by defining the complex numbers Z = X + iY and z = (ε/ε0)

exp(−iπa/180◦) (with i equal to the square root of -1) and writing Z =
λ ln(z). For this reason, the cortical map is sometimes called a complex
logarithmic map (see Schwartz, 1977). For an image scaled radially by acomplex

logarithmic map factor γ, eccentricities change according to ε → γε while a is unaffected.
Scaling of the eccentricity produces a shift X → X + λ ln(γ) over the range
of values where the simple logarithmic form of the map is valid. The log-
arithmic transformation thus causes images that are scaled radially out-
ward on the retina to be represented at locations on the cortex translated in
the X direction. For smaller eccentricities, the map we have derived is only
approximate even in the complete form given by equations 2.15 and 2.17.
This is because the cortical magnification factor is not really isotropic as
we have assumed in this derivation, and a complete description requires
accounting for the curvature of the cortical surface.

Visual Stimuli

Earlier in this chapter, we used the function s(t) to characterize a time-
dependent stimulus. The description of visual stimuli is more complex.
Greyscale images appearing on a two-dimensional surface, such as a video
monitor, can be described by giving the luminance, or light intensity, at
each point on the screen. These pixel locations are parameterized by Carte-
sian coordinates x and y, as in the lower panel of figure 2.6A. However,
pixel-by-pixel light intensities are not a useful way of parameterizing a vi-
sual image for the purposes of characterizing neuronal responses. This is
because visually responsive neurons, like many sensory neurons, adapt to
the overall level of screen illumination. To avoid dealing with adaptation
effects, we describe the stimulus by a function s(x, y, t) that is propor-
tional to the difference between the luminance at the point (x, y) at time t
and the average or background level of luminance. Often s(x, y, t) is also
divided by the background luminance level, making it dimensionless. The
resulting quantity is called the contrast.

During recordings, visual neurons are usually stimulated by images that
vary over both space and time. A commonly used stimulus, the counter-
phase sinusoidal grating, is described bycounterphase

sinusoidal grating
s(x, y, t) = A cos

(
Kx cos� + Ky sin� − �

)
cos(ωt) . (2.18)
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2.3 Introduction to the Early Visual System 15

Figure 2.8 shows a cartoon of a similar grating (a spatial square-wave is
drawn rather than a sinusoid) and illustrates the significance of the pa-
rameters K, �, �, and ω. K and ω are the spatial and temporal frequencies spatial frequency K

frequency ω

orientation �

spatial phase �

amplitude A

of the grating (these are angular frequencies), � is its orientation, � its spa-
tial phase, and A its contrast amplitude. This stimulus oscillates in both
space and time. At any fixed time, it oscillates in the direction perpendic-
ular to the orientation angle � as a function of position, with wavelength
2π/K (figure 2.8A). At any fixed position, it oscillates in time with period
2π/ω (figure 2.8B). For convenience, � is measured relative to the y axis
rather than the x axis so that a stimulus with � = 0, varies in the x, but not
in the y, direction. � determines the spatial location of the light and dark
stripes of the grating. Changing � by an amount 
� shifts the grating
in the direction perpendicular to its orientation by a fraction 
�/2π of its
wavelength. The contrast amplitude A controls the maximum degree of
difference between light and dark areas. Because x and y are measured in
degrees, K has the rather unusual units of radians per degree and K/2π is
typically reported in units of cycles per degree. � has units of radians, ω

is in radians per s, and ω/2π is in Hz.

Θ

s

t

0

x

y

A B

2�=K

2�=!

Figure 2.8: A counterphase grating. A) A portion of a square-wave grating anal-
ogous to the sinusoidal grating of equation 2.18. The lighter stripes are regions
where s > 0, and s < 0 within the darker stripes. K determines the wavelength
of the grating and � its orientation. Changing its spatial phase � shifts the entire
light-dark pattern in the direction perpendicular to the stripes. B) The light-dark
intensity at any point of the spatial grating oscillates sinusoidally in time with pe-
riod 2π/ω.

Experiments that consider reverse correlation and spike-triggered aver-
ages use various types of random and white-noise stimuli in addition to
bars and gratings. A white-noise stimulus, in this case, is one that is un- white-noise image
correlated in both space and time so that

1
T

∫ T

0
dt s(x, y, t)s(x′, y′, t + τ) = σ2

s δ(τ)δ(x − x′)δ(y − y′) . (2.19)

Of course, in practice a discrete approximation of such a stimulus must be
used by dividing the image space into pixels and time into small bins. In
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16 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

addition, more structured random sets of images (randomly oriented bars,
for example) are sometime used to enhance the responses obtained during
stimulation.

The Nyquist Frequency

Many factors limit the maximal spatial frequency that can be resolved by
the visual system, but one interesting effect arises from the size and spac-
ing of individual photoreceptors on the retina. The region of the retina
with the highest resolution is the fovea at the center of the visual field.
Within the macaque or human fovea, cone photoreceptors are densely
packed in a regular array. Along any direction in the visual field, a reg-
ular array of tightly packed photoreceptors of size 
x samples points at
locations m
x for m = 1,2, . . . . The (angular) frequency that defines the
resolution of such an array is called the Nyquist frequency and is given byNyquist frequency

Knyq = π


x
. (2.20)

To understand the significance of the Nyquist frequency, consider sam-
pling two cosine gratings with spatial frequencies of K and 2Knyq − K, with
K < Knyq. These are described by s = cos(Kx) and s = cos((2Knyq − K)x).
At the sampled points, these functions are identical because cos((2Knyq −
K)m
x) = cos(2πm − Km
x) = cos(−Km
x) = cos(Km
x) by the peri-
odicity and evenness of the cosine function (see figure 2.9). As a result,
these two gratings cannot be distinguished by examining them only at the
sampled points. Any two spatial frequenices K < Knyq and 2Knyq − K can
be confused with each other in this way, a phenomenon known as aliasing.
Conversely, if an image is constructed solely of frequencies less than Knyq,
it can be reconstructed perfectly from the finite set of samples provided
by the array. There are 120 cones per degree at the fovea of the macaque
retina which makes Knyq/(2π) = 1/(2
x) = 60 cycles per degree. In this
result, we have divided the right side of equation 2.20, which gives Knyq
in units of radians per degree, by 2π to convert the answer to cycles per
degree.

2.4 Reverse Correlation Methods - Simple Cells

The spike-triggered average for visual stimuli is defined, as in chapter 1,
as the average over trials of stimuli evaluated at times ti − τ, where ti for
i = 1,2, . . . , n are the spike times. Because the light intensity of a visual
image depends on location as well as time, the spike-triggered average
stimulus is a function of three variables,

C(x, y, τ) = 1
〈n〉

〈
n∑

i=1

s(x, y, ti − τ)

〉
. (2.21)
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Figure 2.9: Aliasing and the Nyquist frequency. The two curves are the functions
cos(πx/6) and cos(πx/2) plotted against x, and the dots show points sampled with
a spacing of 
x = 3. The Nyquist frequency in this case is π/3, and the two cosine
curves match at the sampled points because their spatial frequencies satisfy 2π/3 −
π/6 = π/2.

Here, as in chapter 1, the brackets denote trial averaging, and we have
used the approximation 1/n ≈ 1/〈n〉. C(x, y, τ) is the average value of
the visual stimulus at the point (x, y) a time τ before a spike was fired.
Similarly, we can define the correlation function between the firing rate at
time t and the stimulus at time t + τ, for trials of duration T, as

Qrs(x, y, τ) = 1
T

∫ T

0
dt r(t)s(x, y, t + τ) . (2.22)

The spike-triggered average is related to the reverse correlation function,
as discussed in chapter 1, by

C(x, y, τ) = Qrs(x, y,−τ)

〈r〉 , (2.23)

where 〈r〉 is, as usual, the average firing rate over the entire trial, 〈r〉 =
〈n〉/T.

To estimate the firing rate of a neuron in response to a particular image,
we add a function of the output of a linear filter of the stimulus to the
background firing rate r0, as in equation 2.8, rest(t) = r0 + F (L(t)). As in
equation 2.7, the linear estimate L(t) is obtained by integrating over the
past history of the stimulus with a kernel acting as the weighting func-
tion. Because visual stimuli depend on spatial location, we must decide
how contributions from different image locations are to be combined to
determine L(t). The simplest assumption is that the contributions from linear response

estimatedifferent spatial points add linearly so that L(t) is obtained by integrating
over all x and y values,

L(t) =
∫ ∞

0
dτ

∫
dxdy D(x, y, τ)s(x, y, t − τ) . (2.24)

The kernel D(x, y, τ) determines how strongly, and with what sign, the
visual stimulus at the point (x, y) and at time t − τ affects the firing
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18 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

rate of the neuron at time t. As in equation 2.6, the optimal kernel is
given in terms of the firing rate-stimulus correlation function, or the spike-
triggered average, for a white-noise stimulus with variance parameter σ2

s
by

D(x, y, τ) = Qrs(x, y,−τ)

σ2
s

= 〈r〉C(x, y, τ)

σ2
s

. (2.25)

The kernel D(x, y, τ) defines the space-time receptive field of a neuron.space-time
receptive field Because D(x, y, τ) is a function of three variables, it can be difficult to

measure and visualize. For some neurons, the kernel can be written as
a product of two functions, one that describes the spatial receptive field
and the other the temporal receptive field,

D(x, y, τ) = Ds(x, y)Dt(τ) . (2.26)

Such neurons are said to have separable space-time receptive fields. Sep-separable
receptive field arability requires that the spatial structure of the receptive field does

not change over time except by an overall multiplicative factor. When
D(x, y, τ) cannot be written as the product of two terms, the neuron is
said to have a nonseparable space-time receptive field. Given the freedomnonseparable

receptive field in equation 2.8 to set the scale of D (by suitably adjusting the function F),
we typically normalize Ds so that its integral is one, and use a similar rule
for the components from which Dt is constructed. We begin our analysis
by studying first the spatial and then the temporal components of a sepa-
rable space-time receptive field and then proceed to the nonseparable case.
For simplicity, we ignore the possibility that cells can have slightly differ-
ent receptive fields for the two eyes, which underlies the disparity tuning
considered in chapter 1.

Spatial Receptive Fields

Figures 2.10A and C show the spatial structure of spike-triggered average
stimuli for two simple cells in the primary visual cortex of a cat (area 17)
with approximately separable space-time receptive fields. These receptive
fields are elongated in one direction, and there are some regions within the
receptive field where Ds is positive, called ON regions, and others where
it is negative, called OFF regions. The integral of the linear kernel times
the stimulus can be visualized by noting how the OFF (black) and ON
(white) regions overlap the image (see figure 2.11) . The response of a neu-
ron is enhanced if ON regions are illuminated (s > 0) or if OFF regions
are darkened (s < 0) relative to the background level of illumination. Con-
versely, they are suppressed by darkening ON regions or illuminating OFF
regions. As a result, the neurons of figures 2.10A and C respond most vig-
orously to light-dark edges positioned along the border between the ON
and OFF regions and oriented parallel to this border and to the elongated
direction of the receptive fields (figure 2.11). Figures 2.10 and 2.11 show
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Figure 2.10: Spatial receptive field structure of simple cells. A) and C) Spatial
structure of the receptive fields of two neurons in cat primary visual cortex deter-
mined by averaging stimuli between 50 ms and 100 ms prior to an action potential.
The upper plots are three-dimensional representations, with the horizontal dimen-
sions acting as the x-y plane and the vertical dimension indicating the magnitude
and sign of Ds(x, y). The lower contour plots represent the x-y plane. Regions with
solid contour curves are ON areas where Ds(x, y) > 0 and regions with dashed
contours show OFF areas where Ds(x, y) < 0. B) and D) Gabor functions of the
form 2.27 with σx = 1◦, σy = 2◦, 1/k = 0.56◦, and φ = 1 − π/2 (B) or φ = 1 − π (D)
chosen to match the receptive fields in A and C. (A and C adapted from Jones and
Palmer, 1987a.)
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20 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

receptive fields with two major subregions. Simple cells are found with
from one to five subregions. Along with the ON-OFF patterns we have
seen, another typical arrangement is a three-lobed receptive field with an
OFF-ON-OFF or ON-OFF-ON subregions, as seen in figure 2.17B.

B CA

x

y

Figure 2.11: Grating stimuli superimposed on spatial receptive fields similar to
those shown in figure 2.10. The receptive field is shown as two oval regions, one
dark to represent an OFF area where Ds < 0 and one white to denote an ON region
where Ds > 0. A) A grating with the spatial wavelength, orientation, and spatial
phase shown produces a high firing rate because a dark band completely overlaps
the OFF area of the receptive field and a light band overlaps the ON area. B)
The grating shown is non-optimal due to a mismatch in both the spatial phase
and frequency, so that the ON and OFF regions each overlap both light and dark
stripes. C) The grating shown is at a non-optimal orientation because each region
of the receptive field overlaps both light and dark stripes.

A mathematical approximation of the spatial receptive field of a simple
cell is provided by a Gabor function, which is a product of a GaussianGabor function
function and a sinusoidal function. Gabor functions are by no means the
only functions used to fit spatial receptive fields of simple cells. For exam-
ple, gradients of Gaussians are sometimes used. However, we will stick to
Gabor functions, and to simplify the notation, we choose the coordinates
x and y so that the borders between the ON and OFF regions are parallel
to the y axis. We also place the origin of the coordinates at the center of
the receptive field. With these choices, we can approximate the observed
receptive field structures using the Gabor function

Ds(x, y) = 1
2πσxσy

exp

(
− x2

2σ2
x

− y2

2σ2
y

)
cos(kx − φ) . (2.27)

The parameters in this function determine the properties of the spatial re-
ceptive field: σx and σy determine its extent in the x and y directions re-rf size σx, σy

preferred spatial
frequency k
preferred spatial
phase φ

spectively; k, the preferred spatial frequency, determines the spacing of
light and dark bars that produce the maximum response (the preferred
spatial wavelength is 2π/k); and φ is the preferred spatial phase which
determines where the ON-OFF boundaries fall within the receptive field.
For this spatial receptive field, the sinusoidal grating of the form 2.18 that
produces the maximum response for a fixed value of A has K = k, � = φ,
and � = 0.
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2.4 Reverse Correlation Methods - Simple Cells 21

Figures 2.10B and D, show Gabor functions chosen specifically to match
the data in figures 2.10A and C. Figure 2.12 shows x and y plots of a vari-
ety of Gabor functions with different parameter values. As seen in figure
2.12, Gabor functions can have various types of symmetry, and variable
numbers of significant oscillations (or subregions) within the Gaussian en-
velope. The number of subregions within the receptive field is determined
by the product kσx and is typically expressed in terms of a quantity known
as the bandwidth b. The bandwidth is defined as b = log2(K+/K−) where bandwidth
K+ > k and K− < k are the spatial frequencies of gratings that produce one
half the response amplitude of a grating with K = k. High bandwidths
correspond to low values of kσx, meaning that the receptive field has few
subregions and poor spatial frequency selectivity. Neurons with more sub-
fields are more selective to spatial frequency, and they have smaller band-
widths and larger values of kσx.

The bandwidth is the width of the spatial frequency tuning curve mea-
sured in octaves. The spatial frequency tuning curve as a function of K for
a Gabor receptive field with preferred spatial frequency k and receptive
field width σx is proportional to exp(−σ2

x(k − K)2/2) (see equation 2.34
below). The values of K+ and K− needed to compute the bandwidth are
thus determined by the condition exp(−σ2

x(k − K±)2/2) = 1/2. Solving
this equation gives K± = k ± (2 ln(2))1/2/σx from which we obtain

b = log2

(
kσx + √

2 ln(2)

kσx − √
2 ln(2)

)
or kσx =

√
2 ln(2)

2b + 1
2b − 1

. (2.28)

Bandwidth is only defined if kσx >
√

2 ln(2), but this is usually the case
for V1 neurons. For V1 neurons, bandwidths range from about 0.5 to 2.5
corresponding to kσx between 1.7 and 6.9.

The response characterized by equation 2.27 is maximal if light-dark edges
are parallel to the y axis, so the preferred orientation angle is zero. An
arbitrary preferred orientation θ can be generated by rotating the coordi-
nates, making the substitutions x → x cos(θ)+ y sin(θ) and y → y cos(θ)− preferred

orientation θx sin(θ) in equation 2.27. This produces a spatial receptive field that is
maximally responsive to a grating with � = θ. Similarly, a receptive field
centered at the point (x0, y0) rather than at the origin can be constructed
by making the substitutions x → x − x0 and y → y − y0. rf center x0, y0

Temporal Receptive Fields

Figure 2.13 reveals the temporal development of the space-time receptive
field of a neuron in the cat primary visual cortex through a series of snap
shots of its spatial receptive field. More than 300 ms prior to a spike, there
is little correlation between the visual stimulus and the upcoming spike.
Around 210 ms before the spike (τ = 210 ms), a two-lobed OFF-ON re-
ceptive field, similar to the ones in figures 2.10, is evident. As τ decreases
(recall that τ measures time in a reversed sense), this structure first fades
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Figure 2.12: Gabor functions of the form given by equation 2.27. For convenience
we plot the dimensionless function 2πσxσy Ds. A) A Gabor function with σx =
1◦, 1/k = 0.5◦, and φ = 0 plotted as a function of x for y = 0. This function is
symmetric about x = 0. B) A Gabor function with σx = 1◦, 1/k = 0.5◦, and φ = π/2
plotted as a function of x for y = 0. This function is antisymmetric about x = 0
and corresponds to using a sine instead of a cosine function in equation 2.27. C)
A Gabor function with σx = 1◦, 1/k = 0.33◦, and φ = π/4 plotted as a function of
x for y = 0. This function has no particular symmetry properties with respect to
x = 0. D) The Gabor function of equation 2.27 with σy = 2◦ plotted as a function of
y for x = 0. This function is simply a Gaussian.

away and then reverses, so that the receptive field 75 ms before a spike has
the opposite sign from what appeared at τ = 210 ms. Due to latency ef-
fects, the spatial structure of the receptive field is less significant for τ < 75
ms. The stimulus preferred by this cell is thus an appropriately aligned
dark-light boundary that reverses to a light-dark boundary over time.

30 ms75 ms120 ms165 ms210 msτ = 255 ms

y 
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0 5
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Figure 2.13: Temporal evolution of a spatial receptive field. Each panel is a plot
of D(x, y, τ) for a different value of τ. As in figure 2.10, regions with solid con-
tour curves are areas where D(x, y, τ) > 0 and regions with dashed contours have
D(x, y, τ) < 0. The curves below the contour diagrams are one-dimension plots of
the receptive field as a function of x alone. The receptive field is maximally differ-
ent from zero for τ = 75 ms with the spatial receptive field reversed from what it
was at τ = 210 ms. (Adapted from DeAngelis et al., 1995.)

Reversal effects like those seen in figure 2.13 are a common feature of
space-time receptive fields. Although the magnitudes and signs of the
different spatial regions in figure 2.13 vary over time, their locations and
shapes remain fairly constant. This indicates that the neuron has, to a good
approximation, a separable space-time receptive field. When a space-time
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2.4 Reverse Correlation Methods - Simple Cells 23

receptive field is separable, the reversal can be described by a function
Dt(τ) that rises from zero, becomes positive, then negative, and ultimately
goes to zero as τ increases. Adelson and Bergen (1985) proposed the func-
tion shown in Figure 2.14,

Dt(τ) = α exp(−ατ)

(
(ατ)5

5!
− (ατ)7

7!

)
(2.29)

for τ ≥ 0, and Dt(τ) = 0 for τ < 0. Here, α is a constant that sets the scale for
the temporal development of the function. Single phase responses are also
seen for V1 neurons and these can be described by eliminating the second
term in equation 2.29. Three-phase responses, which are sometimes seen,
must be described by a more complicated function.
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Figure 2.14: Temporal structure of a receptive field. The function Dt(τ) of equa-
tion 2.29 with α = 1/(15 ms).

Response of a Simple Cell to a Counterphase Grating

The response of a simple cell to a counterphase grating stimulus (equation
2.18) can be estimated by computing the function L(t). For the separable
receptive field given by the product of the spatial factor in equation 2.27
and the temporal factor in 2.29, the linear estimate of the response can be
written a product of two terms,

L(t) = LsLt(t) , (2.30)

where

Ls =
∫

dxdy Ds(x, y)A cos
(
Kx cos(�) + Ky sin(�) − �

)
. (2.31)

and

Lt(t) =
∫ ∞

0
dτ Dt(τ) cos (ω(t − τ)) . (2.32)

The reader is invited to compute these integrals for the case σx = σy = σ.
To show the selectivity of the resulting spatial receptive fields, we plot (in
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24 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

figure 2.15) Ls as functions of the parameters �, K, and � that determine
the orientation, spatial frequency, and spatial phase of the stimulus. It is
also instructive to write out Ls for various special parameter values. First,
if the spatial phase of the stimulus and the preferred spatial phase of the
receptive field are zero (� = φ = 0), we find that

Ls = A exp
(
−σ2(k2 + K2)

2

)
cosh

(
σ2kK cos(�)

)
, (2.33)

which determines the orientation and spatial frequency tuning for an
optimal spatial phase. Second, for a grating with the preferred orien-
tation � = 0 and a spatial frequency that is not too small, the full ex-
pression for Ls can be simplified by noting that exp(−σ2kK) ≈ 0 for the
values of kσ normally encountered (for example, if K = k and kσ = 2,
exp(−σ2kK) = 0.02). Using this approximation, we find

Ls = A
2

exp
(
−σ2(k − K)2

2

)
cos(φ − �) (2.34)

which reveals a Gaussian dependence on spatial frequency and a cosine
dependence on spatial phase.
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Figure 2.15: Selectivity of a Gabor filter with θ = φ = 0, σx = σy = σ and kσ = 2
acting on a cosine grating with A = 1. A) Ls as a function of stimulus orientation �

for a grating with the preferred spatial frequency and phase, K = k and � = 0. B)
Ls as a function of the ratio of the stimulus spatial frequency to its preferred value,
K/k, for a grating oriented in the preferred direction � = 0 and with the preferred
phase � = 0. C) Ls as a function of stimulus spatial phase � for a grating with the
preferred spatial frequency and orientation, K = k and � = 0.

The temporal frequency dependence of the amplitude of the linear re-
sponse estimate is plotted as a function of the temporal frequency of the
stimulus (ω/2π rather than the angular frequency ω) in figure 2.16. The
peak value around 4 Hz and roll off above 10 Hz are typical for V1 neu-
rons and for cortical neurons in other primary sensory areas as well.

Space-Time Receptive Fields

It is instructive to display the function D(x, y, τ) in a space-time plot rather
than as a sequence of spatial plots (as in figure 2.13). To do this, we sup-
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Figure 2.16: Frequency response of a model simple cell based on the temporal
kernel of equation 2.29. The amplitude of the sinusoidal oscillations of Lt(t) pro-
duced by a counterphase grating is plotted as a function of the temporal oscillation
frequency, ω/2π.

press the y dependence and plot x-τ projections of the space-time kernel.
Space-time plots of receptive fields from two simple cells of the cat pri-
mary visual cortex are shown in figure 2.17. The receptive field in figure
2.17A is approximately separable, and it has OFF and ON subregions that
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Figure 2.17: A separable space-time receptive field. A) An x-τ plot of an approx-
imately separable space-time receptive field from cat primary visual cortex. OFF
regions are shown with dashed contour lines and ON regions with solid contour
lines. The receptive field has side-by-side OFF and ON regions that reverse as a
function of τ. B) Mathematical descriptions of the space-time receptive field in A
constructed by multiplying a Gabor function (evaluated at y = 0) with σx = 1◦,
1/k = 0.56◦, and φ = π/2 by the temporal kernel of equation 2.29 with 1/α = 15
ms. (A adapted from DeAngelis et al., 1995.)

reverse to ON and OFF subregions as a function of τ, similar to the re-
versal seen in figure 2.13. Figure 2.17B shows an x-τ contour plot of a
separable space-time kernel, similar to the one in figure 2.17A, generated
by multiplying a Gabor function by the temporal kernel of equation 2.29.

We can also plot the visual stimulus in a space-time diagram, suppressing
the y coordinate by assuming that the image does not vary as a function of
y. For example, figure 2.18A shows a grating of vertically oriented stripes
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26 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

moving to the left on an x-y plot. In the x-t plot of figure 2.18B, this image
appears as a series of sloped dark and light bands. These represent the
projection of the image in figure 2.18A onto the x axis evolving as a func-
tion of time. The leftward slope of the bands corresponds to the leftward
movement of the image.

x

t

x

y

A B

Figure 2.18: Space and space-time diagrams of a moving grating. A) A vertically
oriented grating moves to the left on a two-dimensional screen. B) The space-time
diagram of the image in A. The x location of the dark and light bands moves to the
left as time progresses upward, representing the motion of the grating.

Most neurons in primary visual cortex do not respond strongly to static
images, but respond vigorously to flashed and moving bars and gratings.
The receptive field structure of figure 2.17 reveals why this is the case, as
is shown in figures 2.19 and 2.20. The image in figures 2.19A-C is a dark
bar that is flashed on for a brief period of time. To describe the linear
response estimate at different times we show a cartoon of a space-time
receptive field similar to the one in figure 2.17A. The receptive field is
positioned at three different times in figures 2.19A, B, and C. The height of
the horizontal axis of the receptive field diagram indicates the time when
the estimation is being made. Figure 2.19A corresponds to an estimate of
L(t) at the moment when the image first appears. At this time, L(t) = 0.
As time progresses, the receptive field diagram moves upward. Figure
2.19B generates an estimate at the moment of maximum response when
the dark image overlaps the OFF area of the space-time receptive field,
producing a positive contribution to L(t). Figure 2.19C shows a later time
when the dark image overlaps an ON region, generating a negative L(t).
The response for this flashed image is thus transient firing followed by
suppression, as shown in Figure 2.19D.

Figures 2.19E and F show why a static dark bar is an ineffective stimulus.
The static bar overlaps both the OFF region for small τ and the reversed
ON region for large τ, generating opposing positive and negative contri-
butions to L(t). The flashed dark bar of figures 2.19A-C is a more effective
stimulus because there is a time when it overlaps only the OFF region.

Figure 2.20 shows why a moving grating is a particularly effective stimu-
lus. The grating moves to the left in 2.20A-C. At the time corresponding to
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Figure 2.19: Responses to dark bars estimated from a separable space-time recep-
tive field. Dark ovals in the receptive field diagrams are OFF regions and light cir-
cles are ON regions. The linear estimate of the response at any time is determined
by positioning the receptive field diagram so that its horizontal axis matches the
time of response estimation and noting how the OFF and ON regions overlap with
the image. A-C) The image is a dark bar that is flashed on for a short interval of
time. There is no response (A) until the dark image overlaps the OFF region (B)
when L(t) > 0. The response is later suppressed when the dark bar overlaps the
ON region (C) and L(t) < 0. D) A plot of L(t) versus time corresponding to the
responses generated in A-C. Time runs vertically in this plot, and L(t) is plotted
horizontally with the dashed line indicating the zero axis and positive values plot-
ted to the left. E) The image is a static dark bar. The bar overlaps both an OFF and
an ON region generating opposing positive and negative contributions to L(t). F)
The weak response corresponding to E, plotted as in D.

the positioning of the receptive field diagram in 2.20A, a dark band stim-
ulus overlaps both OFF regions and light bands overlap both ON regions.
Thus, all four regions contribute positive amounts to L(t). As time pro-
gresses and the receptive field moves upward in the figure, the alignment
will sometimes be optimal, as in 2.20A, and sometimes non-optimal, as in
2.20B. This produces an L(t) that oscillates as a function of time between
positive and negative values (2.20C). Figures 2.20D-F show that a neuron
with this receptive field responds equally to a grating moving to the right.
Like the left-moving grating in figures 2.20A-C, the right-moving grating
can overlap the receptive field in an optimal manner (2.20D) producing
a strong response, or in a maximally negative manner (2.20E) producing
strong suppression of response, again resulting in an oscillating response
(2.20F). Separable space-time receptive fields can produce responses that
are maximal for certain speeds of grating motion, but they are not sensitive
to the direction of motion.
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Figure 2.20: Responses to moving gratings estimated from a separable space-time
receptive field. The receptive field is the same as in figure 2.19. A-C) The stimulus
is a grating moving to the left. At the time corresponding to A, OFF regions overlap
with dark bands and ON regions with light bands generating a strong response.
At the time of the estimate in B, the alignment is reversed, and L(t) is negative. C)
A plot of L(t) versus time corresponding to the responses generated in A-B. Time
runs vertically in this plot and L(t) is plotted horizontally with the dashed line
indicating the zero axis and positive values plotted to the left. D-F) The stimulus
is a grating moving to the right. The responses are identical to those in A-C.

Nonseparable Receptive Fields

Many neurons in primary visual cortex are selective for the direction of
motion of an image. Accounting for direction selectivity requires nonsepa-
rable space-time receptive fields. An example of a nonseparable receptive
field is shown in figure 2.21A. This neuron has a three-lobed OFF-ON-
OFF spatial receptive field, and these subregions shift to the left as time
moves forward (and τ decreases). This means that the optimal stimulus
for this neuron has light and dark areas that move toward the left. One
way to describe a nonseparable receptive field structure is to use a sepa-
rable function constructed from a product of a Gabor function for Ds and
equation 2.29 for Dt, but express these as functions of a mixture or rotation
of the x and τ variables. The rotation of the space-time receptive field, as
seen in figure 2.21B, is achieved by mixing the space and time coordinates
using the transformation

D(x, y, τ) = Ds(x′, y)Dt(τ
′) (2.35)
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Figure 2.21: A nonseparable space-time receptive field. A) An x-τ plot of the
space-time receptive field of a neuron from cat primary visual cortex. OFF regions
are shown with dashed contour lines and ON regions with solid contour lines. The
receptive field has a central ON region and two flanking OFF regions that shift to
the left over time. B) Mathematical description of the space-time receptive field in
A constructed from equations 2.35 - 2.37. The Gabor function used (evaluated at
y = 0) had σx = 1◦, 1/k = 0.5◦, and φ = 0. Dt is given by the expression in equation
2.29 with α = 20 ms except that the second term, with the seventh power function,
was omitted because the receptive field does not reverse sign in this example. The
x-τ rotation angle used was ψ = π/9 and the conversion factor was c = 0.02 ◦/ms.
(A adapted from DeAngelis et al., 1995.)

with

x′ = x cos(ψ) − cτ sin(ψ) (2.36)

and

τ′ = τ cos(ψ) + x
c

sin(ψ) . (2.37)

The factor c converts between the units of time (ms) and space (degrees)
and ψ is the space-time rotation angle. The rotation operation is not the
only way to generate nonseparable space-time receptive fields. They are
often constructed by adding together two or more separable space-time
receptive fields with different spatial and temporal characteristics.

Figure 2.22 shows how a nonseparable space-time receptive field can pro-
duce a response that is sensitive to the direction of motion of a grating.
Figures 2.22A-C show a left-moving grating and, in 2.22A, the cartoon of
the receptive field is positioned at a time when a light area of the image
overlaps the central ON region and dark areas overlap the flanking OFF
regions. This produces a large positive L(t). At other times, the align-
ment is non-optimal (2.22B), and over time, L(t) oscillates between fairly
large positive and negative values (2.22C). The nonseparable space-time
receptive field does not overlap optimally with the right-moving grating
of figures 2.22D-F at any time and the response is correspondingly weaker
(2.22F). Thus, a neuron with a nonseparable space-time receptive field can
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Figure 2.22: Responses to moving gratings estimated from a nonseparable space-
time receptive field. Dark areas in the receptive field diagrams represent OFF re-
gions and light areas ON regions. A-C) The stimulus is a grating moving to the
left. At the time corresponding to A, OFF regions overlap with dark bands and
the ON region overlaps a light band generating a strong response. At the time of
the estimate in B, the alignment is reversed, and L(t) is negative. C) A plot of L(t)
versus time corresponding to the responses generated in A-B. Time runs vertically
in this plot and L(t) is plotted horizontally with the dashed line indicating the zero
axis. D-F) The stimulus is a grating moving to the right. Because of the tilt of the
space-time receptive field, the alignment with the right-moving grating is never
optimal and the response is weak (F).

be selective for the direction of motion of a grating and for its velocity, direction selectivity
preferred velocityresponding most vigorously to an optimally spaced grating moving at a

velocity given, in terms of the parameters in equation 2.36, by c tan(ψ).

Static Nonlinearities - Simple Cells

Once the linear response estimate L(t) has been computed, the firing rate
of a visually responsive neuron can be approximated by using equation
2.8, rest(t) = r0 + F(L(t)) where F is an appropriately chosen static non-
linearity. The simplest choice for F consistent with the positive nature of
firing rates, is rectification, F = G[L]+, with G set to fit the magnitude of
the measured firing rates. However, this choice makes the firing rate a lin-
ear function of the contrast amplitude, which does not match the data on
the contrast dependence of visual responses. Neural responses saturate ascontrast saturation
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the contrast of the image increases and are more accurately described by
r ∝ An/(An

1/2 + An) where n is near two, and A1/2 is a parameter equal to
the contrast amplitude that produces a half-maximal response. This led
Heeger (1992) to propose that an appropriate static nonlinearity to use is

F(L) = G[L]2+
A2

1/2 + G[L]2+
(2.38)

because this reproduces the observed contrast dependence. A number of
variants and extensions of this idea have also been considered, including,
for example, that the denominator of this expression should include L fac-
tors for additional neurons with nearby receptive fields. This can account
for the effects of visual stimuli outside the ‘classical’ receptive field. Dis-
cussion of these effects is beyond the scope of this chapter.

2.5 Static Nonlinearities - Complex Cells

Recall that a large proportion of the neurons in primary visual cortex is
separated into classes of simple and complex cells. While linear methods,
such as spike-triggered averages, are useful for revealing the properties
of simple cells, at least to a first approximation, complex cells display fea-
tures that are fundamentally incompatible with a linear description. The
spatial receptive fields of complex cells cannot be divided into separate
ON and OFF regions that sum linearly to generate the response. Areas
where light and dark images excite the neuron overlap making it difficult
to measure and interpret spike-triggered average stimuli. Nevertheless,
like simple cells, complex cells are selective to the spatial frequency and
orientation of a grating. However, unlike simple cells, complex cells re-
spond to bars of light or dark no matter where they are placed within the
overall receptive field. Likewise, the responses of complex cells to grating
stimuli show little dependence on spatial phase. Thus, a complex cell is spatial phase

invarianceselective for a particular type of image independent of its exact spatial po-
sition within the receptive field. This may represent an early stage in the
visual processing that ultimately leads to position-invariant object recog-
nition.

Complex cells also have temporal response characteristics that distinguish
them from simple cells. Complex cell responses to moving gratings are
approximately constant, not oscillatory as in figures 2.20 and 2.22. The
firing rate of a complex cell responding to a counterphase grating oscil-
lating with frequency ω has both a constant component and an oscillatory
component with a frequency of 2ω, a phenomenon known as frequency frequency doubling
doubling.

Even though spike-triggered average stimuli and reverse correlation func-
tions fail to capture the response properties of complex cells, complex-
cell responses can be described, to a first approximation, by a relatively
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32 Neural Encoding II: Reverse Correlation and Visual Receptive Fields

straightforward extension of the reverse correlation approach. The key ob-
servation comes from equation 2.34, which shows how the linear response
estimate of a simple cell depends on spatial phase for an optimally ori-
ented grating with K not too small. Consider two such responses, labeled
L1 and L2, with preferred spatial phases φ and φ − π/2. Including both the
spatial and temporal response factors, we find, for preferred spatial phase
φ,

L1 = AB(ω, K) cos(φ − �) cos(ωt − δ) (2.39)

where B(ω, K) is a temporal and spatial frequency-dependent amplitude
factor. We do not need the explicit form of B(ω, K) here, but the reader is
urged to derive it. For preferred spatial phase φ − π/2,

L2 = AB(ω, K) sin(φ − �) cos(ωt − δ) (2.40)

because cos(φ − π/2 − �) = sin(φ − �). If we square and add these two
terms, we obtain a result that does not depend on �,

L2
1 + L2

2 = A2B2(ω, K) cos2(ωt − δ) , (2.41)

because cos2(φ − �) + sin2(φ − �) = 1. Thus, we can describe the re-
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Figure 2.23: Selectivity of a complex cell model in response to a sinusoidal grat-
ing. The width and preferred spatial frequency of the Gabor functions underlying
the estimated firing rate satisfy kσ = 2. A) The complex cell response estimate,
L2

1 + L2
2, as a function of stimulus orientation � for a grating with the preferred

spatial frequency K = k. B) L2
1 + L2

2 as a function of the ratio of the stimulus spatial
frequency to its preferred value, K/k, for a grating oriented in the preferred direc-
tion � = 0. C) L2

1 + L2
2 as a function of stimulus spatial phase � for a grating with

the preferred spatial frequency and orientation K = k and � = 0.

sponse of a complex cell by writing

r(t) = r0 + G
(
L2

1 + L2
2

)
. (2.42)

The selectivities of such a response estimate to grating orientation, spatial
frequency, and spatial phase are shown in figure 2.23. The response of the
model complex cell is tuned to orientation and spatial frequency, but the
spatial phase dependence, illustrated for a simple cell in figure 2.15C, is
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absent. In computing the curve for figure 2.23C, we used the exact expres-
sions for L1 and L2 from the integrals in equations 2.31 and 2.32, not the
approximation 2.34 used to simplify the discussion above. Although it is
not visible in the figure, there is a weak dependence on � when the exact
expressions are used.

The complex cell response given by equations 2.42 and 2.41 reproduces
the frequency doubling effect seen in complex cell responses because the
factor cos2(ωt − δ) oscillates with frequency 2ω. This follows from the
identity

cos2(ωt − δ) = 1
2

cos (2(ωt − δ)) + 1
2

. (2.43)

In addition, the last term on the right side of this equation generates the
constant component of the complex cell response to a counterphase grat-
ing. Figure 2.24 shows a comparison of model simple and complex cell
responses to a counterphase grating and illustrates this phenomenon.
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Figure 2.24: Temporal responses of model simple and complex cells to a coun-
terphase grating. A) The stimulus s(x, y, t) at a given point (x, y) plotted as a
function of time. B) The rectified linear response estimate of a model simple cell to
this grating with a temporal kernel given by equation 2.29 with α = 1/(15 ms). C)
The frequency doubled response of a model complex cell with the same temporal
kernel but with the estimated rate given by a squaring operation rather than recti-
fication. The background firing rate is r0 = 5 Hz. Note the temporal phase shift of
both B and C relative to A.

The description of a complex cell response that we have presented is called
an ‘energy’ model because of its resemblance to the equation for the energy energy model
of a simple harmonic oscillator. The pair of linear filters used, with pre-
ferred spatial phases separated by π/2 is called a quadrature pair. Because
of rectification, the terms L2

1 and L2
2 cannot be constructed by squaring the
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outputs of single simple cells. However, they can each be constructed by
summing the squares of rectified outputs from two simple cells with pre-
ferred spatial phases separated by π. Thus, we can write the complex cell
response as the sum of the squares of four rectified simple cell responses,

r(t) = r0 + G
(
[L1]2

+ + [L2]2
+ + [L3]2

+ + [L4]2
+
)
, (2.44)

where the different [L]+ terms represent the responses of simple cells with
preferred spatial phases φ, φ + π/2, φ + π, and φ + 3π/2. While such a
construction is possible, it should not be interpreted too literally because
complex cells receive input from many sources including the LGN and
other complex cells. Rather, this model should be viewed as purely de-
scriptive. Mechanistic models of complex cells are described at the end of
this chapter and in chapter 7.

2.6 Receptive Fields in the Retina and LGN

We end this discussion of the visual system by returning to the initial
stages of the visual pathway and briefly describing the receptive field
properties of neurons in the retina and LGN. Retinal ganglion cells dis-
play a wide variety of response characteristics, including nonlinear and
direction-selective responses. However, a class of retinal ganglion cells (X
cells in the cat or P cells in the monkey retina and LGN) can be described
by a linear model built using reverse correlation methods. The receptive
fields of this class of retinal ganglion cells and an analogous type of LGN
relay neurons are similar, so we do not treat them separately. The spa-
tial structure of the receptive fields of these neurons has a center-surround
structure consisting either of a circular central ON region surrounded by
an annular OFF region, or the opposite arrangement of a central OFF re-
gion surrounded by an ON region. Such receptive fields are called ON-
center or OFF-center respectively. Figure 2.25A shows the spatial receptive
fields of an ON-center cat LGN neuron.

The spatial structure of retinal ganglion and LGN receptive fields is well-
captured by a difference-of-Gaussians model in which the spatial receptivedifference of

Gaussians field is expressed as

Ds(x, y) = ±
(

1
2πσ2

cen
exp

(
−x2 + y2

2σ2
cen

)
− B

2πσ2
sur

exp
(
−x2 + y2

2σ2
sur

))
.

(2.45)

Here the center of the receptive field has been placed at x = y = 0. The first
Gaussian function in equation 2.45 describes the center and the second the
surround. The size of the central region is determined by the parameter
σcen, while σsur, which is greater than σcen, determines the size of the sur-
round. B controls the balance between center and surround contributions.
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Figure 2.25: Receptive fields of LGN neurons. A) The center-surround spatial
structure of the receptive field of a cat LGN X cell. This has a central ON region
(solid contours) and a surrounding OFF region (dashed contours). B) A fit of the
receptive field shown in A using a difference of Gaussian function (equation 2.45)
with σcen = 0.3◦, σsur = 1.5◦, and B = 5. C) The space-time receptive field of a
cat LGN X cell. Note that both the center and surround regions reverse sign as
a function of τ and that the temporal evolution is slower for the surround than
for the center. D) A fit of the space-time receptive field in C using 2.46 with the
same parameters for the Gaussian functions as in B, and temporal factors given by
equation 2.47 with 1/αcen = 16 ms for the center, 1/αsur = 32 ms for the surround,
and 1/βcen = 1/βsur = 64 ms. (A and C adapted from DeAngelis et al., 1995.)

The ± sign allows both ON-center (+) and OFF-center (−) cases to be rep-
resented. Figure 2.25B shows a spatial receptive field formed from the dif-
ference of two Gaussians that approximates the receptive field structure in
figure 2.25A.

Figure 2.25C shows that the spatial structure of the receptive field reverses
over time with, in this case, a central ON region reversing to an OFF region
as τ increases. Similarly, the OFF surround region changes to an ON re-
gion with increasing τ, although the reversal and the onset are slower for
the surround than for the central region. Because of the difference between
the time course of the center and surround regions, the space-time recep-
tive field is not separable, although the center and surround components
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are individually separable. The basic features of LGN neuron space-time
receptive fields are captured by the mathematical caricature

D(x, y, τ) = ±
(

Dcen
t (τ)

2πσ2
cen

exp
(
−x2 + y2

2σ2
cen

)
− BDsur

t (τ)

2πσ2
sur

exp
(
−x2 + y2

2σ2
sur

))
.

(2.46)

Separate functions of time multiply the center and surround, but they can
both be described by the same functions using two sets of parameters,

Dcen,sur
t (τ) = α2

cen,surτ exp(−αcen,surτ) − β2
cen,surτ exp(−βcen,surτ) . (2.47)

The parameters αcen and αsur control the latency of the response in the cen-
ter and surround regions respectively, and βcen and βsur affect the time of
the reversal. This function has characteristics similar to the function 2.29,
but the latency effect is less pronounced. Figure 2.25D shows the space-
time receptive field of equation 2.46 with parameters chosen to match fig-
ure 2.25C.
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Figure 2.26: Comparison of predicted and measured firing rates for a cat LGN
neuron responding to a video movie. The top panel is the rate predicted by inte-
grating the product of the video image intensity and a linear filter obtained for this
neuron from a spike-triggered average of a white-noise stimulus. The resulting
linear prediction was rectified. The middle and lower panels are measured firing
rates extracted from two different sets of trials. (From Dan et al., 1996.)

Figure 2.26 shows the results of a direct test of a reverse correlation model
of an LGN neuron. The kernel needed to describe a particular LGN cell
was first extracted using a white-noise stimulus. This, together with a rec-
tifying static nonlinearity, was used to predict the firing rate of the neuron
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in response to a video movie. The top panel in figure 2.26 shows the result-
ing prediction while the middle and lower panels show the actual firing
rates extracted from two different groups of trials. The correlation coef-
ficient between the predicted and actual firing rates was 0.5, which was
very close to the correlation coefficient between firing rates extracted from
different groups of trials. This means that the error of the prediction was
no worse than the variability of the neural response itself.

2.7 Constructing V1 Receptive Fields

The models of visual receptive fields we have been discussing are purely
descriptive, but they provide an important framework for studying how
the circuits of the retina, LGN, and primary visual cortex generate neural
responses. In an example of a more mechanistic model, Hubel and Wiesel
(1962) showed how the oriented receptive fields of cortical neurons could
be generated by summing the input from appropriately selected LGN neu-
rons. Their construction, shown in figure 2.27A, consists of alternating Hubel-Wiesel

simple cell modelrows of ON-center and OFF-center LGN cells providing convergent input
to a cortical simple cell. The left side of figure 2.27A shows the spatial ar-
rangement of LGN receptive fields that, when summed, form bands of ON
and OFF regions resembling the receptive field of an oriented simple cell.
This model accounts for the selectivity of a simple cell purely on the basis
of feedforward input from the LGN. We leave the study of this model as
an exercise for the reader. Other models, which we discuss in chapter 7,
include the effects of recurrent intracortical connections as well.

In a previous section, we showed how the properties of complex cell re-
sponses could be accounted for using a squaring static nonlinearity. While
this provides a good description of complex cells, there is little indication
that complex cells actually square their inputs. Models of complex cells
can be constructed without introducing a squaring nonlinearity. One such
example is another model proposed by Hubel and Wiesel (1962), which
is depicted in figure 2.27B. Here the phase-invariant response of a com- Hubel-Wiesel

complex cell modelplex cell is produced by summing together the responses of several simple
cells with similar orientation and spatial frequency tuning, but different
preferred spatial phases. In this model, the complex cell inherits its orien-
tation and spatial frequency preference from the simple cells that drive it,
but spatial phase selectivity is reduced because the outputs of simple cells
with a variety of spatial phases selectivities are summed linearly. Analysis
of this model is left as an exercise. While the model generates complex cell
responses, there are indications that complex cells in primary visual cor-
tex are not exclusively driven by simple cell input. An alternative model
is considered in chapter 7.
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LGN receptive fields
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Figure 2.27: A) The Hubel-Wiesel model of orientation selectivity. The spatial
arrangement of the receptive fields of nine LGN neurons are shown, with a row
of three ON-center fields flanked on either side by rows of three OFF-center fields.
White areas denote ON fields and grey areas OFF fields. In the model, the con-
verging LGN inputs are summed linearly by the simple cell. This arrangement
produces a receptive field oriented in the vertical direction. B) The Hubel-Wiesel
model of a complex cell. Inputs from a number of simple cells with similar ori-
entation and spatial frequency preferences (θ and k), but different spatial phase
preferences (φ1, φ2, φ3, and φ4), converge on a complex cell and are summed lin-
early. This produces a complex cell output that is selective for orientation and
spatial frequency, but not for spatial phase. The figure shows four simple cells
converging on a complex cell, but additional simple cells can be included to give a
more complete coverage of spatial phase.

2.8 Chapter Summary

We continued from chapter 1 our study of the ways that neurons encode
information, focusing on reverse-correlation analysis, particularly as ap-
plied to neurons in the retina, visual thalamus (LGN), and primary vi-
sual cortex. We used the tools of systems identification, especially the
linear filter, Wiener kernel, and static nonlinearity to build descriptive lin-
ear and nonlinear models of the transformation from dynamic stimuli to
time-dependent firing rates. We discussed the complex logarithmic map
governing the way that neighborhood relationships in the retina are trans-
formed into cortex, Nyquist sampling in the retina, and Gabor functions as
descriptive models of separable and nonseparable receptive fields. Models
based on Gabor filters and static nonlinearities were shown to account for
the basic response properties of simple and complex cells in primary visual
cortex, including selectivity for orientation, spatial frequency and phase,
velocity, and direction. Retinal ganglion cell and LGN responses were
modeled using a difference-of-Gaussians kernel. We briefly described sim-
ple circuit models of simple and complex cells.
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2.9 Appendices

A) The Optimal Kernel

Using equation 2.1 for the estimated firing rate, the expression 2.3 to be
minimized is

E = 1
T

∫ T

0
dt

(
r0 +

∫ ∞

0
dτ D(τ)s(t − τ) − r(t)

)2

. (2.48)

The minimum is obtained by setting the derivative of E with respect to functional
derivativethe function D to zero. A quantity, such as E, that depends on a func-

tion, D in this case, is called a functional, and the derivative we need is a
functional derivative. Finding the extrema of functionals is the subject of
a branch of mathematics called the calculus of variations. A simple way to
define a functional derivative is to introduce a small time interval 
t and
evaluate all functions at integer multiples of 
t. We define ri = r(i
t),
Dk = D(k
t), and si−k = s((i − k)
t). If 
t is small enough, the integrals
in equation 2.48 can be approximated by sums, and we can write

E = 
t
T

T/
t∑
i=0

(
r0 + 
t

∞∑
k=0

Dksi−k − ri

)2

. (2.49)

E is minimized by setting its derivative with respect to Dj for all values of
j to zero,

∂E
∂Dj

= 0 = 2
t
T

T/
t∑
i=0

(
r0 + 
t

∞∑
k=0

Dksi−k − ri

)
si− j
t . (2.50)

Rearranging and simplifying this expression gives the condition


t
∞∑

k=0

Dk

(

t
T

T/
t∑
i=0

si−ksi− j

)
= 
t

T

T/
t∑
i=0

(ri − r0) si− j . (2.51)

If we take the limit 
t → 0 and make the replacements i
t → t, j
t →
τ, and k
t → τ′, the sums in equation 2.51 turn back into integrals, the
indexed variables become functions, and we find∫ ∞

0
dτ′ D(τ′)

(
1
T

∫ T

0
dt s(t − τ′)s(t − τ)

)
= 1

T

∫ T

0
dt (r(t) − r0) s(t − τ) .

(2.52)

The term proportional to r0 on the right side of this equation can be
dropped because the time integral of s is zero. The remaining term is the
firing rate-stimulus correlation function evaluated at −τ, Qrs(−τ). The
term in large parentheses on the left side of 2.52 is the stimulus autocorre-
lation function. By shifting the integration variable t → t + τ, we find that
it is Qss(τ − τ′), so 2.52 can be re-expressed in the form of equation 2.4.
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Equation 2.6 provides the solution to equation 2.4 only for a white noise
stimulus. For an arbitrary stimulus, equation 2.4 can be solved easily by
the method of Fourier transforms if we ignore causality and allow the es-
timated rate at time t to depend on the stimulus at times later than t, so
that

rest(t) = r0 +
∫ ∞

−∞
dτ D(τ)s(t − τ) . (2.53)

The estimate written in this acausal form, satisfies a slightly modified ver-
sion of equation 2.4,∫ ∞

−∞
dτ′ Qss(τ − τ′)D(τ′) = Qrs(−τ) . (2.54)

We define the Fourier transforms (see the Mathematical Appendix)

D̃(ω) =
∫ ∞

−∞
dt D(t)exp(iωt) and Q̃ss(ω) =

∫ ∞

−∞
dτ Qss(τ)exp(iωτ)

(2.55)

as well as Q̃rs(ω) defined analogously to Q̃ss(ω).

Equation 2.54 is solved by taking the Fourier transform of both sides and
using the convolution identity (Mathematical Appendix)∫ ∞

−∞
dt exp(iωt)

∫ ∞

−∞
dτ′ Qss(τ − τ′)D(τ′) = D̃(ω)Q̃ss(ω) (2.56)

In terms of the Fourier transforms, equation 2.54 then becomes

D̃(ω)Q̃ss(ω) = Q̃rs(−ω) (2.57)

which can be solved directly to obtain D̃(ω) = Q̃rs(−ω)/Q̃ss(ω). The in-
verse Fourier transform from which D(τ) is recovered is (Mathematical
Appendix)

D(τ) = 1
2π

∫ ∞

−∞
dω D̃(ω)exp(−iωτ) , (2.58)

so the optimal acausal kernel when the stimulus is temporally correlated
is given by

D(τ) = 1
2π

∫ ∞

−∞
dω

Q̃rs(−ω)

Q̃ss(ω)
exp(−iωτ) . (2.59)

B) The Most Effective Stimulus

We seek the stimulus that produces the maximum predicted responses at
time t subject to the fixed energy constraint∫ T

0
dt′

(
s(t′)

)2 = constant . (2.60)
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We impose this constraint by the method of Lagrange multipliers (see
the Mathematical Appendix), which means that we must find the uncon-
strained maximum value with respect to s of

rest(t) + λ

∫ T

0
dt′ s2(t′) = r0 +

∫ ∞

0
dτ D(τ)s(t − τ) + λ

∫ T

0
dt′

(
s(t′)

)2 (2.61)

where λ is the Lagrange multiplier. Setting the derivative of this expres-
sion with respect to the function s to zero (using the same methods used
in appendix A) gives

D(τ) = −2λs(t − τ) . (2.62)

The value of λ (which is less than zero) is determined by requiring that
condition 2.60 is satisfied, but the precise value is not important for our
purposes. The essential result is the proportionality between the optimal
stimulus and D(τ).

C) Bussgang’s Theorem

Bussgang (1952 & 1975) proved that an estimate based on the optimal ker-
nel for linear estimation can still be self-consistent (although not necessar-
ily optimal) when nonlinearities are present. The self-consistency condi-
tion is that when the nonlinear estimate rest = r0 + F(L(t)) is substituted
into equation 2.6, the relationship between the linear kernel and the firing
rate-stimulus correlation function should still hold. In other words, we
require that

D(τ) = 1
σ2

s T

∫ T

0
dt rest(t)s(τ − t) = 1

σ2
s T

∫ T

0
dt F(L(t))s(τ − t) . (2.63)

We have dropped the r0 term because the time integral of s is zero. In
general, equation 2.63 does not hold, but if the stimulus used to extract D
is Gaussian white noise, equation 2.63 reduces to a simple normalization
condition on the function F. This result is based on the identity, valid for a
Gaussian white-noise stimulus,

1
σ2

s T

∫ T

0
dt F(L(t))s(τ − t) = D(τ)

T

∫ T

0
dt

dF(L(t))
dL

. (2.64)

For the right side of this equation to be D(τ), the remaining expression,
involving the integral of the derivative of F, must be equal to one. This can
be achieved by appropriate scaling of F. The critical identity 2.64 is based
on integration by parts for a Gaussian weighted integral. A simplified
proof is left as an exercise.
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2.10 Annotated Bibliography

Marmarelis & Marmarelis (1978), Rieke et al. (1997) and Gabbiani &
Koch (1998) provide general discussions of reverse correlation methods.
A useful reference relevant to our presentation of their application to the
visual system is Carandini et al. (1996). Volterra and Wiener functional
expansions are discussed in Wiener (1958) and Marmarelis & Marmarelis
(1978).

General introductions to the visual system include Hubel & Wiesel (1962,
1977), Orban (1984), Hubel (1988), Wandell (1995), and De Valois & De
Valois (1990). Our treatment follows Dowling (1987) on processing in the
retina, and Schwartz (1977), Van Essen et al. (1984), and Rovamo & Virsu
(1984) on aspects of the retinotopic map from the eye to the brain. Prop-
erties of this map are used to account for aspects of visual hallucinations
in Ermentrout & Cowan (1979). We also follow Movshon et al. (1978a &
b) for definitions of simple and complex cells; Daugman (1985) and Jones
& Palmer (1987b) on the use of Gabor functions (Gabor, 1946) to describe
visual receptive fields; and DeAngelis et al. (1995) on space-time recep-
tive fields. Our description of the energy model of complex cells is based
on Adelson & Bergen (1985), which is related to work by Pollen & Ronner
(1982), Van Santen & Sperling (1984), and Watson & Ahumada (1985), and
to earlier ideas of Reichardt (1961) and Barlow & Levick (1965). Heeger’s
(1992; 1993) model of contrast saturation is reviewed in Carandini et al.
(1996) and has been applied in a approach more closely related to the
representational learning models of chapter 10 by Simoncelli & Schwartz
(1999). The difference-of-Gaussians model for retinal and LGN receptive
fields is due to Rodieck (1965) and Enroth-Cugell and Robson (1966). A
useful reference to modeling of the early visual system is Wörgötter &
Koch (1991). The issue of linearity and non-linearity in early visual pro-
cessing is reviewed by Ferster (1994).
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