
Assignment 2: Spike time dependent plasticity

Neural Computation 2008-2009. Mark van Rossum

27th March 2009

Practical info

You will �nd that some questions are quite open-ended. A particularly well-
researched answer can receive additional points, but core-dumping (just writing
down all you can think of) does not. Ideally you substantiate your explanations,
for instance by additional simulations. Plots should include axes labels and units
(either on the plot, or mentioned in the text), see my web page link. There might
be a to be determined normalization factor between the number of points scored
and the resulting percentage mark.

It should not be necessary to consult scienti�c literature. If you do use additional
literature, cite it.

Copying results is absolutely not allowed and can lead to severe punishment. It's
OK to ask for help from your friends. However, this help must not extend to
copying code, results, or written text that your friend has written, or that you and
your friend have written together. I assess you on the basis of what you are able
to do by yourself. It's OK to help a friend. However, this help must not extend to
providing your friend with code or written text. If you are found to have done so,
a penalty will be assessed against you as well.

Deadline will be announced via email and the website. Hand in a paper copy to
ITO, but if you are out of town an email to me is ok (pdf or postscript). Late policies
are stated at http://www.inf.ed.ac.uk/teaching/years/msc/courseguide08.

html#exam.

Framework of simulation

In this exercise we study spike timing dependent plasticity (STDP) in a population
of integrate and �re neurons. We will model a single layer of neurons with n = 5
neurons. Each neuron receives input from other neurons in the network through
lateral connections, and in addition each neuron receives its own external input.
We use the term 'spikes' when refering to the output spikes of the neurons in the
network; we use the term 'events' for the spikes of the inputs (although these could
in principle be spikes from another set of neurons).

Make the inputs periodically active, so that input to neuron 1 has an event at
10 ms, input to neuron 2 at 20 ms, input to neuron 3 at 30ms, etc. This is
followed by silence. The pattern repeats with a period of 100 ms. So input 1
is active again at 110 ms. You can use the 'mod' function to implement this:

1

relativetime = mod(time, period) returns the time relative to the period. And
if(mod(relativetime, 10)==0) can be used to check if the time is an exact mul-
tiple of 10 ms. Check your code by plotting the inputs as a function of time.

The neurons are modelled as leaky integrate-and-�re neurons (without adaptation).
The input events and the spikes from other neurons give rise to synaptic input
currents, which for simplicity are modelled as currents (not as conductances). The
synaptic currents rise instantaneously and decay as single exponentials with a synap-
tic time constant τsyn = 5ms. Other parameters: τm = 20ms, simulation timestep
0.1 ms, Vthr = −50mV , Vreset = Vrest = −70mV . Take Rm = 1Ω (this is far from
realistic but it is easier and scales out anyway). This means that the currents are
measured in mA.

Question 1 (5 points): First we need to �nd a good initial value for the synaptic
weights. Calculate analytically the EPSC amplitude required for a single input
to �re the cell from rest and check in simulation.

Use an amplitude for the inputs of 150mA, these input synapses are not plastic.

Connect the neurons with the lateral weight matrix. Initialise all the weights in the
matrix to 20mA, but always exclude self-connections.

For the rest of this practical we need raster plots. For instance, one can plot on
the x-axis the time since pattern onset, and on the y-axis the pattern repetition
number. The spikes are indicated by crosses. One can plot spikes from multiple
neurons in one plot using code like,

for icell=1:n

sptimes = find(spikes(icell,:));

relsptimes=mod(sptimes, period/dt)*dt

spy = icell + 0.9*sptimes/ndt;

plot(relsptimes, spy, 'x')

hold on

end

Question 2 (5 points): Simulate for 1 second. Plot the spikes in a raster plot.
Explain the various aspects of the result.

Plasticity

Next, the connections between the neurons are made plastic. With wij we denote
the synapse from neuron i to neuron j. Here we implement the plasticity as follows:
every time neuron j spikes, the synapses onto this neuron are increased with an
amount

∆wij =
αwmax

τplast
exp[−|ti − tnow|/τplast]

where ti is the last time that neuron i was active, and tnow is the current time.
Parameters: α = 3ms, τplast = 20ms. Similarly, depression in the reciprocal synapse
occurs according to

∆wji = −αwmax

τplast
exp[−|ti − tnow|/τplast]

These rules can be compactly written in Matlab by the following scheme: 1) track
the last time each input was active in an array with n elements. 2) When you

2

update the membrane potential, use the '�nd' command to �nd which neurons
reached threshold. Whenever one or more neurons spiked, potentiate and depress
the weights. When you keep the neurons' membrane potential in an array, you can
use that statements such as (vmem>vthr) to return an array of 0s and 1s.

Finally, after changing the weights, put hard bounds on the synaptic weights so
that 0 ≤ wij ≤ wmax, wmax = 150mA.

Question 3 (10 points): Simulate the network until the weights reach a stable
value. Plot the spikes and explain the results.
Also plot or describe the resulting lateral weight matrix and interpret it.

Next, we study if this network can be used to store and recall the input train.

Question 4 (5 points): Train the network as in Question 3 and then just give the
�rst neuron an input. Plot and describe the resulting activity in the network.

Question 5 (10 points): Explore ways to store the input pattern more precisely in
terms of number of spikes and timing.

3

