
NAT Tutorial 5:  Particle Swarm Optimization

1. Consider one of the following problems (or any other one that seems to be 
interesting) and explain how you would use ant colony optimization to find an 
acceptable solution: Sequential ordering, classification (e.g. of images), graph 
colouring, the knapsack problem (or the cutting stock problem), protein folding, the 
shortest common supersequence problem (for details cf. wikipedia). For this 
purpose, Dorigo has suggested to answer the following questions:

a) Define a set of candidate solutions and the set of feasible solutions.
b) Define a greedy construction heuristic:

i) What are the solution components?
ii) How do you measure the objective function contribution of addition 
a solution components 
iii) Is it always possible to construct feasible solutions?
iv) How many different solutions can be generated with the 
constructive heuristic?

c) Define a local search algorithm:
i) How can local changes be defined?
ii) How many solution components are involved in each local search 
step?
iii) How do you choose which neighbouring solution to move to?
iv) Does the local search always maintain feasibility of solutions?

Answer: Analogous to the AntTSP and AntBin in the lecture. The goal of this 
exercise is twofold: Get an idea to what type of problems ACO is applicable and 
recall the main steps of the algorithm. 

2. Consider a particle “swarm” consisting of a single member. How would it perform in 
a trivial task such as the minimization of f(x)=x2? How in a more complex problem? 
How is diversity produced in a particle swarm of many members?

Answer: Assume the particle starts with the velocity pointing away from the 
optimum. Then the personal best would act to retract the particle towards the goal, 
i.e. the velocity would turn after some time and the particle would head towards the 
goal. Personal best would loose its influence (the current point is now always “best”) 
and the velocity would slowly decrease (for omega smaller than one). If the velocity 
reaches zero before the goal is reached the algorithm gets stuck (how would the 
population help?), otherwise the particle passes the goal, but will be retracted 
toward the goal as this is now the personal best. Since omega is smaller than 1 it 
would oscillate around the goal with decreasing amplitude. For this simple problem, 
it is unlikely that the particle fails unless it did before passing the goal the first time. 
Iteration-bast is ignored here as it gives no contribution for a single particle.

3. How would you adapt particle swarm optimization to the travelling salesperson 
problem?

Answer: Particles are usually searching a continuous space, but TSP is discrete. In 
Ref. (Kennedy and Eberhart 1997) a discrete version has been proposed. Velocities 
are still continuous, but positions are discrete and are incremented by a single step 
when the velocity is above a certain threshold. In this way, the states can directly be 
used to encode either an integer number (what city to go next) or a binary number 
(whether one of the (n-1)n/2 links in the graph is used for a tour). It may be useful to 



think of a spatial meaning of the states (i.e. such that velocities are meaningful), this 
is a good strategy for the generalized TSP, where not just cities are to be connected 
by also rather clusters of cities.

4. Compare the function of the algorithms for particle swarm optimisation and 
differential evolution.

Answer: The algorithms are quite similar in structure and areas of application. DE 
can be considered as a variant of PSO. In particular, the randomisation of the 
increments or the state vectors is more or less the same, but instead of individual 
velocities in PSO, differences among two other individuals are used in DE in order 
to construct increments. While the velocities can learn some goal directedness 
(similar to the mutabilities in ES), the differences in DE are less likely to represent 
some goal-orientation, but they can produce exploration in a direct way, whereas in 
PSO (some form of) the constriction rule is necessary in order to achieve a good 
balance between exploration and exploitation. Both algorithms can get trapped in a 
local minimum: for DE “unreasonable” differences (i.e. across random components 
of the vectors) can be used. For both algorithm this degeneration is not so much 
induced by the fitness function but by the parameters, in both algorithms an 
instability of  the population can be triggered by a relative increase of the effects 
from one generation to the next. One does not need to enforce or to wait for 
convergence, because the best-so-far individual is recorded anyway.

5. Run some example simulations (Start MASON below “Applets and Screenshots”) at 
http://cs.gmu.edu/~eclab/projects/mason/ E.g.: Ant Foraging, Flockers, HeatBugs 
and in particular Particle Swarm Optimization (click “Model” to change parameters)
Another visualizer is at www.projectcomputing.com/resources/psovis/index.html 
(PSO only)

6. How are social behaviours in living organisms helpful in developing optimization 
techniques? Think of examples other than foraging ants, see e.g. 
www.red3d.com/cwr/ibm.html (meant as an inspiration not as a reading list)

Answer: All living organisms have solved optimisation problems, although often the 
optimisation problem is not fixed (as we wish to have it for standard applications) 
but determined by the environment, i.e. the presence of other individuals/species 
determines the fitness function. Most interestingly there are many non-trivial 
applications where the assumption of a fixed fitness function is not appropriate, too, 
e.g. in optimizing business processes, strategies in games, programming of agents 
and robots that interact with other individuals (e.g. multi-agent systems, robot 
soccer).
Nevertheless, some optimisation problems can be separated from the complex 
environment of the animal such direct analogies for applications can be made, e.g. 
pheromones trails as a means to optimise path lengths. Other examples included 
foraging (bee colony algorithms where different types of individuals produce the 
solution in a social effort: “explorers”, “messenger” and “gatherers” represent 
different aspects of the exploration/exploitation problem which can be individully 
controlled or varied over the course of the run of the algorithm.
Other examples: Frogs jump  “away” when any dark shadow shows. What means 
“away”? Using the degree of unexploredness as a definition of “away”, the frog 
analogy can improve exploration in search problems. 
Fireflies: All fireflies are unisex, so that one firefly will be attracted to all other 
fireflies. Attractiveness is proportional to their brightness, and for any two fireflies, 
the less brighter one will attract (and thus move) to the brighter one; however, the 



brightness can decrease as their distance increases. If there are no fireflies brighter 
than a given firefly, it will move randomly. Fireflies can also synchronise (i.e. a group 
is periodically flashing with same same phase and frequency; in this way they can 
signalise that particular parts of a solution fit well together. This can be used e.g. as 
a model of language perception (it's then not fireflies but neurons ...)
What about navigation of migrating birds (swarms for robot navigation)? Animals 
defending their territory (for clustering)? Evolution of parasite-host or predator-prey 
relations for efficient strategies?
Other related examples (that not really from living organisms) are: Harmony search, 
formation of river networks, simulated annealing.
Sometimes it is not the analogy which is used in natural computing but the 
mechanism itself, e.g. the recombination of DNA can be used directly as a 
computational mechanism.

7. Considering the application of the particle swarm optimization to the travelling 
salesperson problem, how would you encode a bin-packing problem (see the ACO 
lectures) in an particle swarm?

Answer: The TSP was discussed in lect. 15. Bin-packing is very similar. Like in 
AntBin (Lect. 10), where pheromones tau_b(j) indicate the preference for an item of 
size j in bin b. What are the required operations?
– a “position” is an assignment of items to bins
– a “velocity” is an change of the position (stuffing in some items here, removing 
elsewhere some items: This might not be possible and needs a procedure closure:
if an item is to be removed that is not there: ignore
if an item is to be added that does not fit in: use e.g. first fit decreasing (lect. 10) 
which is used anyway in AntBin for local search. In the worst case, add more bins.

Subtraction (position – position) operator: pairwise compare all bins and take 
idfferences
Addition (position + velocity) operator: see above “velocity”
Addition (velocity + velocity) operator: application of one “velocity” after the other.
Multiplication (coefficient times velocity) operator:  possible is a (for a multiplication 
by 0.5, e.g.) not to perform the operations (removing and adding) in half of the 
bins. But this multiplication is often not used: drawback: lack of parameters 
which can be compensated by GA-like operations (that come with parameters) 
which introduce diversity and compose building blocks.

After these operations are define, run PSO as usual, making sure that 
diversity is well-balanced e.g. by measuring size of swarm.
 

8. Discuss the combination of PSO and particle filters. See Lectures on PSO and the 
mentioned paper: 
G. Tong, Z. Fang, X. Xu (2006) A particle swarm optimized particle filter for nonlin-
ear system state estimation, http://portal.acm.org/citation.cfm?id=1389095.1389104

9. Go through the ressources at bingweb.binghamton.edu/~sayama/SwarmChemistry/
in particular read Sayama’s article on “Hyperinteractive Evolutionary Computation”


