
Natural Computing

Lecture 17

Michael Herrmann
mherrman@inf.ed.ac.uk
phone: 0131 6 517177
Informatics Forum 1.42

15/11/2011

Membrane Computing

15/11/2011 NAT17 J.M. Herrmann

Perspectives

Nanotechnology: Self-assembly, micromanipulation

Synthetic biology

Swarm intelligence in nano-robots

Computing using designed molecules to carry out elementary
computations

Computation on surfaces, gels, networks

Membrane computing

Quantum computing: �rst universal 2-qubit quantum
computer in 2009 (79% accuracy), 3 qubit (2010)

15/11/2011 NAT17 J.M. Herrmann

Natural Computing: A Formal Perspective

Studying of models of computation inspired by biological
systems

Some approaches in Natural Computing use the methods of
formal language theory

L systems: Development of multicellular organisms (plants),
(Aristid Lindenmayer, 1968)
Cellular Automata (Stephen Wolfram, 1983; based on work by
v. Neumann, Hedlund, Conway et al.)
H systems: DNA (Tom Head, 1987)
P systems: Membranes (Gheorghe P un, 1998)

15/11/2011 NAT17 J.M. Herrmann

L Systems

An L system can be de�ned as

G = (V ;ω;P)

V is an alphabet
ω ∈ V ∗ is the initial state of
the system
P is a �nite set of rules a→ v

with a ∈ V and v ∈ V ∗(rules
are applied simultaneously)

Total parallelism: All symbols of a string processed at the
same time

Example G = ({a} , a, {a→ aa}) generates the language{
a2

n |n ≥ 1
}
which is not context-free (due to parallelism!)

Languages generated by L Systems are recognized by Systolic
Automata (not context-free)

15/11/2011 NAT17 J.M. Herrmann

L Systems: Fractal plant

Variables : X (meta symbol) F
(draw forward)

Constants : + = (turn left/right
with angle 30o)

Start : F

Rules : (F → F [−FF]F [+FF]F)

[save current position and
angle

] restore values saved at
corresponding [

http://en.wikipedia.org/wiki/L-system
pics: http://www.jcu.edu/math/vignettes/lsystems.htm

15/11/2011 NAT17 J.M. Herrmann

Cellular Automata

Grid of cells: 1D or 2D ...

Each cell assumes a state (n-ary,
n ≥ 2)

State changes in discrete time in
dependence of a �nite number
of neighbors

Every cell has the same rule for
updating

Examples:

Sierpinski triangle (Rule 60)
Conway's Game of Life

Rule 30

111 110 101 100 011 010 001 000

0 0 0 1 1 1 1 0

http://en.wikipedia.org/wiki/File:CA_rule30s.png

15/11/2011 NAT17 J.M. Herrmann

H Systems

�Splicing systems� (existed already before Adleman 1994)

Inspired by DNA reproduction (crossover action of restriction
proteins)

Crossing over operations assume the place of rewrite rules

H systems can be de�ned as

H = (V ;A;R)

V : alphabet
A ⊆ V ∗ initial language
R: splicing rules ui , xi , yi ∈ V ∗

u1#u2$u3#u4 : (x1u1u2x2, y1u3u4y2) → x1u1u4y2

Turing complete (even without mutation)

15/11/2011 NAT17 J.M. Herrmann

Membrane Computing

Cells have a usually a large number of compartments hosting a
huge variety of biochemical reactions

Membrane Computing is a generalization of DNA computing:
Within di�erent regions of space di�erent but not unrelated
computations can be performed.

Functions of membranes in the cell

Separators between compartments
Channels for communication between compartments

Biologically inspired, but a computational rather than a
biological model

Gheorghe P un: Computing with Membranes, (1998)

15/11/2011 NAT17 J.M. Herrmann

Membrane Computing

An area that seeks to discover new computational models from
the study of the cellular membranes.

It not so much the task of creating a cellular model but to
derive a computational mechanism from processes that are
know to proceed in a cell.

Deals with distributed and parallel computing models,
processing multisets of symbol objects

The various types of membrane systems have been formalized
as P systems.

Gheorghe P un: Introduction to Membrane Computing

(citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.8425&rep=rep1&type=pdf)
P un showed also that splicing systems (or H systems) are computationally universal, i.e. proved an
important fact in DNA computing.

15/11/2011 NAT17 J.M. Herrmann

P Systems

A membrane structure formed by several membranes
embedded in a unique main membrane (skin)

Multisets of objects placed inside the regions delimited by the
membranes (one per each region)

The objects are represented as symbols of a given alphabet
(each symbol denotes a di�erent object)

Sets of evolution rules associated with the regions (one per
each region), which allow the system

to produce new objects starting from existing ones
to move objects from one region to another

15/11/2011 NAT17 J.M. Herrmann

P Systems: Formal De�nition

A P System Π is given by

Π = (V ,C , µ, w1, . . . , wn, R1, . . . , Rn, io)

V : alphabet (elements are called objects)

C ∈ V : catalysts

µ ⊂ N× N: membrane structure, such that (i , j) ∈ µ denotes
that membrane j is contained in membrane i

wi ∈ V ∗ (1 ≤ i ≤ n): multiset of objects inside membrane i

Ri (1 ≤ i ≤ n): evolution rule inside membrane i

io : output region

15/11/2011 NAT17 J.M. Herrmann

P systems

Evolution rule of region
r : ca→ cbindoutdhere

�a copy of object a in the presence of
a copy of the catalyst c is replaced by
a copy of the object b and 2 copies of
the object d � and

�b enters the inner membrane of
region r � and

�one copy of d leaves region r � and

�one copy of d remains in r .�

15/11/2011 NAT17 J.M. Herrmann

Computation in a P-system

Initial con�guration: Construct a membrane structure and
place an initial multiset of objects inside the regions of the
system.

Apply the rules in a nondeterministic parallel manner: in each
step, in each region, each object can be evolved according to
some rule

Halting if a con�guration is reached where no rules can be
applied

The result is the multisets formed by the objects contained in
a speci�c output membrane

A non-halting computation yields no result

Example: Assume the environment is reduced to some speci�c
input objects. Now if the system halts in a �nal con�guration,
the system has �recognized�this input.

15/11/2011 NAT17 J.M. Herrmann

More operators

Membrane dissolution

Priorities, reaction
rates

Catalysts

Bi-stable catalysts

Membrane permeability

Active membranes:
creation, deletion,
duplication

P-systems with catalysts are computationally universal

P-systems with symport/antiport (communicative P-systems)
are computationally universal � even without chemical
reactions)

15/11/2011 NAT17 J.M. Herrmann

Maximal Parallelism

Evolution rules are applied with maximal parallelism:

More than one rule can be applied (on di�erent objects) in the
same step

Each rule can be applied more than once in the same step (on
di�erent objects)

Maximality means that:

A multiset of instances of evolution rules is chosen
nondeterministically such that no other rule can be applied to
the system obtained by removing all the objects necessary to
apply the chosen instances of rules.

From a course of Andrea Maggiolo Schettini http://www.di.unipi.it/~maggiolo/Corso_Macao/

15/11/2011 NAT17 J.M. Herrmann

Types of �Membrane� Systems

1 Cell-like P systems: membranes hierarchically arranged

2 Tissue-like P systems: nodes are associated with the cells

3 Neural-like P systems

4 Population P-systems: Networks of evolutionary processes

15/11/2011 NAT17 J.M. Herrmann

Spiking Neural P Systems

Neural networks can be expressed as P systems:

Only one object: the symbol denoting a spike

One-membrane cells (called neurons) which can hold any
number of spikes

Each neuron �res in speci�ed conditions (after collecting a
speci�ed number of spikes): sends one spike along its axon

The spike passes to all neurons connected by a synapse to the
spiking neuron (replicated into as many copies as many target
neurons exist);

One of the neurons is considered the output one, and its spikes
provide the output of the computation.

Spiking neural P systems are universal

M. Ionescu et al.: Spiking neural P systems. Journal Fundamenta Informaticae archive 71:2,3, 2006.

15/11/2011 NAT17 J.M. Herrmann

Natural computing with P systems

Complex dynamics of a biophysical system

Parallel by nature

Largely nondeterministic

Encoding/readout problems must be solved in applications to
practical problems

Computation works well in many problems but may be
ine�ective or ine�cient on some problems

In natural computing, good solutions emerge or are discovered
rather than being designed, although capabilities of design are
presently improving in a very impressive way.

15/11/2011 NAT17 J.M. Herrmann

Use of X -systems (X ∈{P , L,H})

Understanding computing in nature

Formulating behavioural equivalence

Planning experiments

15/11/2011 NAT17 J.M. Herrmann

�Computing is a Natural Science�

Information processes abundant in nature

Wiener (1958) �Cybernetics is the science of communication
and control, whether in machines or living organisms.�

Ken Wilson: Computing as a third leg of science (joining
theory and experiment)

tools (beginning in the 1940s)
methods (beginning in the 1980s)
fundamental processes (beginning in the 2000s)

Computation is a sequence of representations, in which each
transition is controlled by a representation (Peter J. Denning)

Information and computation are being discovered as
fundamental processes in many �elds. Computing is no longer
a science of just the arti�cial. It is the study of information
processes, natural and arti�cial (→ informatics).

Peter J. Denning, Communications of the ACM, July 2007, Vol. 50, No. 7

15/11/2011 NAT17 J.M. Herrmann

Natural Computing

Inspired or realized by the complex dynamics of a biophysical
system

Parallel by nature

Nondeterministic

Encoding problems are crucial in applications to practical
problems

Computation works well in many problems but may be
ine�ective or ine�cient on some problems

In natural computing, good solutions emerge rather than being
designed

15/11/2011 NAT17 J.M. Herrmann

Conclusion

Nature is the major source of inspiration

Natural phenomena can be translated into computing
paradigms
Natural processes can be (and are) used as carriers of
computational operations

In addition to electronic phenomena other physical e�ects are
prospectively useful for computation

Speci�c problems deserve speci�c solutions, less speci�ed
problems require more general approaches

Final lecture will be on: Quantum computing (brief introduction)

15/11/2011 NAT17 J.M. Herrmann

