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The canonical PSO algorithm

For each particle (for all members in the swarm) i = 1 . . . n

Create random vectors r1, r2 with components in U [0, 1]

update velocities

vi ← ωvi + α1r1 ◦ (x̂i − xi) + α2r2 ◦ (ĝ − xi)

◦: componentwise multiplication

update positions

xi ← xi + vi

update local bests (for a minimisation problem)
x̂i ← xi if f (xi ) < f (x̂i )

update global best (for a minimisation problem)
ĝ ← xi if f (xi ) < f (ĝ)
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Overview

Standard meta-heuristic algorithms

Bees, frogs, �re�ies, bats, cuckoos, eagles

Comparison of metaheuristic algorithms

Intensi�cation and diversi�cation

A bit of genetics
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Related optimisation methods
... not quite biologically inspired

Random multi-start local search (possibly with recorded search
history)

Simulated annealing: Random with a time-dependent
acceptance rate of deteriorations,

acceptance probability e−|∆|/T where ∆ is the �tness
di�erence (always accept improvements), T follows a cooling
schedule
variant threshold accepting: simpli�cation of SA that accepts
worsening if it is below a (time-dependent) threshold

Greedy Randomized Adaptive Search Procedures (GRASP):
Randomized greedy method to generate initial solutions for
local search; iterated local search; variable neighbourhood
search

Taboo search: Modify �tness function such that previously
found optima are removed, e.g. great deluge algorithm
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Comparison on the single machine scheduling problem

M. YAGIURA and T. IBARAKI: On Metaheuristic Algorithms for Combinatorial
Optimization Problems (2001).
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Comparison on the MAXSAT problem

M. YAGIURA and T. IBARAKI: On Metaheuristic Algorithms for Combinatorial
Optimization Problems (2001).
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Comparison among ME algorithms

Global bests in a standard set of benchmark problems based
on a standard solution quality metrics (neither is agreed upon)

Comparisons are not always meaningful

Standard data sets are simple,
Data sets are pragmatically selected
Even with best intentions one's own algorithm will be better
tuned than the algorithm of a competitor

Open competitions are an option

Preparation: Parameter adaptation on a given dataset
Competition: Test on a similar but unknown data set with
manual readjustment of parameters

Asymptotic space and time complexity (e.g. runtime growth rate)

Dimension and sensitivity of the parameter space

J. Silberholz and B: Golden: Comparison of Metaheuristics. in Handbook of Metaheuristics 2010,
Vol. 146, 625-640.
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Principles for comparisons

First experimental principle: The problems used for assessing the
performance of an algorithm cannot be used in the development of
the algorithm itself.

Second experimental principle: The designer can take into account
any available domain-speci�c knowledge as well as make use of
pilot studies on similar problems.

Third experimental principle: When comparing several algorithms,
all the algorithms should make use of the available domain-speci�c
knowledge, and equal computational e�ort should be invested in all
the pilot studies. Similarly, in the test phase, all the algorithms
should be compared on an equal computing time basis.

Mauro Birattari, Mark Zlochinand Marco Dorigo: Toward a theory of practice in metaheuristic design: A
machine learning perspective. RAIRO-Inf. Theor. Appl. 40 (2006) 353-369.
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Bees, frogs, �re�ies, bats, cuckoos, eagles

Honey bee algorithm: A bee directs others to nectar sources in
dependence on its previous success (cf. ACO)

Fire�ies algorithm: Fire�ies attract others by an inverse square
law of the �light intensity� (i.e. �tness) (cf. ACO)

Bat algorithm: Bats �y with a velocity that depends on their
�wave length� (i.e. �tness), but can change also loudness and
duration of the pulse etc. (cf. PSO)

Frog leaping algorithm: Out of several subgroups of frogs the
best ones are allowed to �jump�, i.e. to exchange di�erence
vectors (cf. DE)

see X-S Yang: Nature-inspired metaheuristic algorithms. Luniver Press 2010.
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Emad Elbeltagi, Tarek Hegazy, Donald Grierson (2005) Advanced Comparison among
�ve evolutionary-based optimization algorithms. Engineering Informatics 19, 43�53.



Advanced Comparison

Emad Elbeltagi, Tarek Hegazy, Donald Grierson (2005) Advanced Comparison among
�ve evolutionary-based optimization algorithms. Engineering Informatics 19, 43�53.
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Result of the comparison

. . . and the winner is

(check back for the next competition)
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Example: Power Generation Expansion Planning

Long-term behaviour of electricity markets

Minimize the total investment and the operating cost of the
generating units

Meet the demand criteria, fuel mix ratio, and the reliability
criteria

Highly constrained, nonlinear, discrete optimization problem

Solution through complete enumeration in the entire planning
horizon

System dynamics models for system behaviour: Detailed
relationships between the main variables of the system with
explicit recognition of feedbacks and delays.

S. Kannan, S. Mary Raja Slochanal, and Narayana Prasad Padhy: Application and Comparison of
Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE TRANSACTIONS ON
POWER SYSTEMS 20:1, 2005.
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Another competition

Algorithms:

Genetic algorithm
Di�erential evolution
Evolutionary programming
Evolution strategies
Ant colony optimization
Particle swarms
Taboo search
simulated annealing
Hybrid approach
(GA+direct search in linear span)
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Medium term results

(Cost, # �tness evaluations, # generations, error range,
success rate, execution time)
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Long term results
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Conclusion on Comparisons

Tuning of all algorithm by generic methods

virtual mapping procedure (e.g. n1× type A power station,
n2× type B: use variable n that Cantor enumerates the array
formed by the pairs(n1, n2))
intelligent initial population generation (does not observe
constraints but meets the demand plus a reserve margin)
penalty factor approach (constraints are penalised, but not
deselected)

Dynamic programming (DP) is optimal when computable

Hybrid approach wins!

Among the others: DE is best (perhaps because 4 vectors are
�crossed over� instead of 2 in GA etc.)
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Intensi�cation and diversi�cation

OG = solely guided by the objective function
NOG = solely guided by one or more function other than the
objective function
R = solely guided by randomness

C. Blum & A. Roli: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35:3, 2003, 268�308.
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A conclusion on MHO: Intensi�cation and diversi�cation

�A metaheuristic will be successful on a given optimization problem
if it can provide a balance between the exploitation of the
accumulated search experience and the exploration of the search
space to identify regions with high quality solutions in a problem
speci�c, near optimal way.�

T. Stuetzle: Local Search Algorithms for Combinatorial Problems�Analysis,

Algorithms and New Applications. DISKI. in�x, St. Augustin, 1999.
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The Genetic Code

James Watson,
Francis Crick,
Maurice Wilkins
and Rosalind
Franklin:
DNA structure
(hypothesis 1953,
Nobel Prize 1962)
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The Genetic Code

George Gamow (1950s): Triplets as the elementary units of the
genetic code (codons) [he wrongly assumed ambiguity:
GGAC=GGA+GAC (please do not memorize!)]
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The Genetic Code
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Coding Principle

43 = 64
combinations
from
3 base pairs
Encoding
20 amino acids
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Central Dogma of Molecular Biology

Original work by Mike Jones for wikipedia.NAT14 4/11/2011 J. M. Herrmann



Central Dogma of Molecular Biology

Enunciated by Francis Crick in 1958 (Nature 1970)

�Information cannot be transferred back from protein to either
protein or nucleic acid.�

In other words, �once information gets into protein, it can't
�ow back to nucleic acid.�

From:
To

DNA RNA Protein

DNA replication reverse transcription ?

RNA transcription RNA replication ?

Protein direct translation translation prions?

general transfer, special transfer, unknown
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Outlook

DNA Computing beyond metaphorics
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