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The canonical PSO algorithm

For each particle (for all members in the swarm) i=1 ... n

o Create random vectors r, r, with components in U [0, 1]

o update velocities

Vi — wvi +aqn o (X — x;) + azra 0 (& — xi)
o: componentwise multiplication

@ update positions
X; < X; + v;

@ update local bests (for a minimisation problem)
R x; if f(x,-) < f()A(,')

@ update global best (for a minimisation problem)
g xiif f(x)<f(g)
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Overview

Standard meta-heuristic algorithms

Bees, frogs, fireflies, bats, cuckoos, eagles

o
o
e Comparison of metaheuristic algorithms
@ Intensification and diversification

o

A bit of genetics
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Related optimisation methods

.. not quite biologically inspired

@ Random multi-start local search (possibly with recorded search
history)

@ Simulated annealing: Random with a time-dependent
acceptance rate of deteriorations,

o acceptance probability e I2l/T where A is the fitness
difference (always accept improvements), T follows a cooling
schedule

e variant threshold accepting: simplification of SA that accepts
worsening if it is below a (time-dependent) threshold

e Greedy Randomized Adaptive Search Procedures (GRASP):
Randomized greedy method to generate initial solutions for
local search; iterated local search; variable neighbourhood
search

@ Taboo search: Modify fitness function such that previously
found optima are removed, e.g. great deluge algorithm
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Comparison on the single machine scheduling problem

average error (%)
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M. YAGIURA and T. IBARAKI: On Metaheuristic Algorithms for Combinatorial
Optimization Problems (2001).
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Comparison on the MAXSAT problem
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M. YAGIURA and T. IBARAKI: On Metaheuristic Algorithms for Combinatorial
Optimization Problems (2001).
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Comparison among ME algorithms

@ Global bests in a standard set of benchmark problems based
on a standard solution quality metrics (neither is agreed upon)

e Comparisons are not always meaningful

e Standard data sets are simple,
o Data sets are pragmatically selected
o Even with best intentions one's own algorithm will be better
tuned than the algorithm of a competitor
@ Open competitions are an option

o Preparation: Parameter adaptation on a given dataset
o Competition: Test on a similar but unknown data set with
manual readjustment of parameters

@ Asymptotic space and time complexity (e.g. runtime growth rate)

@ Dimension and sensitivity of the parameter space

J. Silberholz and B: Golden: Comparison of Metaheuristics. in Handbook of Metaheuristics 2010,
Vol. 146, 625-640.
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Principles for comparisons

First experimental principle: The problems used for assessing the
performance of an algorithm cannot be used in the development of
the algorithm itself.

Second experimental principle: The designer can take into account
any available domain-specific knowledge as well as make use of
pilot studies on similar problems.

Third experimental principle: When comparing several algorithms,
all the algorithms should make use of the available domain-specific
knowledge, and equal computational effort should be invested in all
the pilot studies. Similarly, in the test phase, all the algorithms
should be compared on an equal computing time basis.

Mauro Birattari, Mark Zlochinand Marco Dorigo: Toward a theory of practice in metaheuristic design: A
machine learning perspective. RAIRO-Inf. Theor. Appl. 40 (2006) 353-369.
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Bees, frogs, fireflies, bats, cuckoos, eagles

@ Honey bee algorithm: A bee directs others to nectar sources in
dependence on its previous success (cf. ACO)

o Fireflies algorithm: Fireflies attract others by an inverse square
law of the “light intensity” (i.e. fitness) (cf. ACO)

o Bat algorithm: Bats fly with a velocity that depends on their
“wave length” (i.e. fitness), but can change also loudness and
duration of the pulse etc. (cf. PSO)

@ Frog leaping algorithm: Out of several subgroups of frogs the

best ones are allowed to “jump”, i.e. to exchange difference
vectors (cf. DE)

see X-S Yang: Nature-inspired metaheuristic algorithms. Luniver Press 2010.
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i A )]
a) Genetic algorithms: Survival of the
genetically fittest (i.e., tallest)

b) Memetic algorithms: Survival of the
genetically fittest and most experienced

Local search
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c) Particle swarm: Flock migration
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d) Ant colony: Shortest path to food source

e) Shuffled Frog Leaping: Group search for food

Search space: each group
performing local search, then
they change information with
other groups

Emad Elbeltagi, Tarek Hegazy, Donald Grierson (2005) Advanced Comparison among
five evolutionary-based optimization algorithms. Engineering Informatics 19, 43-53.




Advanced Comparison

Results af the continuons oprimizanon problems

Comparison Algorithm Number of variables
criteria F8 EFID
10 20 50 100 10 20 30
T Success GaAs (Evolver) 50 30 10 0 20 (4] 0
MAs S0 100 100 100 100 70 0
PSO in &0 100 100 00 &0 Al
ACO - - - - - - -
SFL 50 70 90 100 80 20
Mean solution Gas (BEvelver) 0.06 0,097 0161 0.432 0.455 1.128
MAs [{EEDE} 003 04001 0009 0.014 0068
PSO (ne3 (LR 0411 011 0,009 (n7s
ACO - - - - - - -
SFL 0.08 0.063 0.049 0.019 0.058 2252 G469

Resulis of the discrete optimization problem

Algorithm Minimum Minimunm % Success Processing
duration (d duration (davs) cost (Sy rate

GAs 113 120 0 16

MAs 110 114 20 21

P80 11 112 60 15

ACO 110 122 20 10

SFT. e 123 0 15

Emad Elbeltagi, Tarek Hegazy, Donald Grierson (2005) Advanced Comparison among
five evolutionary-based optimization algorithms. Engineering Informatics 19, 43-53.
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Result of the comparison
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Fig. 5. Processing time 1o reach the optimum for £8 function.
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Example: Power Generation Expansion Planning

@ Long-term behaviour of electricity markets

@ Minimize the total investment and the operating cost of the
generating units

@ Meet the demand criteria, fuel mix ratio, and the reliability
criteria

@ Highly constrained, nonlinear, discrete optimization problem

@ Solution through complete enumeration in the entire planning
horizon

@ System dynamics models for system behaviour: Detailed
relationships between the main variables of the system with
explicit recognition of feedbacks and delays.

S. Kannan, S. Mary Raja Slochanal, and Narayana Prasad Padhy: Application and Comparison of
Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE TRANSACTIONS ON
POWER SYSTEMS 20:1, 2005.
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Another competition

Algorithms:

Genetic algorithm
Differential evolution
Evolutionary programming
Evolution strategies

Ant colony optimization
Particle swarms

Taboo search

simulated annealing
Hybrid approach

(GA+direct search in linear span)

BEST PARAMETERS FOR 6-YEAR PLANNING HORIZON

Methods (Parameters)

Parameter values

GA (P, P, Crossover strategy)
DE (P, F, Mutation strategy)
EP (B, Mutation strategy)

ES (V)

ACO (TotAnts)

PSO (Wmax, C1, C2)

TS (Neighbors, Tabu list)

SA (Te, cooling schedule)

HA (P., Py, Phase-2)

(0.7, 0.15, stochastic crossover)
(0.5, 0.5, Rand/ Rand-Rand)
(0.02, Gaussian & Cauchy)
Adaptive V

25

0.8,1.5,1.5)

(25, 5)

(400, 0. 95 x Te)

(0.9, 0. 15, heuristic search)
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Medium term results

xlom Convergence characteristics of GA, DE and EP

RESULTS FOR 6-YEAR PLANNING HORIZON 1.245
— DE
Cost x 10§ Error | SR Exe. 1.24 - %PA 1
Tt et | worst | ATE NG ey | e | ime 1235} ]
GA 1.2009 1.2024 10222 266 | 0-0.12 72 41.2 /i\
DE 1.2009 1.2009 12100 130 0 100 44 © 1.23 1
EP 1.2009 1.2012 9685 272 0-0.02 80 39.3 8
ES 1.2009 1.2024 7866 375 0-0.12 78 45.8 ‘g 1.225 1
ACO 1.2009 1.2096 4560 165 0-0.74 18 90 ©
PSO 1.2009 1.2014 9635 112 0-0.04 68 50 g 122 1
SA 1.2009 1.2086 5690 120 0-0.64 40 11.6 [3 1215 ]
TS 1.2009 1.2024 7200 421 0-0.12 40 26.7 -
HA 1.2009 1.2012 14365 320 0-0.02 90 66 1.21 ]
DP 1.2009 0 100 4.8
. . . 1.205 1
(Cost, # fitness evaluations, # generations, error range,
success rate, execution time) 12 . - ro— S e——

0 20 40 60 8 100 120 140 160 180 200
No. of Generations --->
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Long term results

RESULTS FOR 14-YEAR PLANNING HORIZON

Tech Cost x 10" S Error | SR Exe.
Best | worst | M0 | ANO ey | en | me
GA | 2.1834 | 2.1979 | 12242 | 266 | 0208 | 0 | 1262
glf ;:g;‘; ;12;; 11‘(‘)‘62‘; ;g %_i'_%'; é) iig:; Comparison of Exe. time of metaheuristic techniques with DP
ES | 2.1840 | 2.1957 | 8766 | 375 | 02-07 | 0 | 1383 2500
ACO - - - - - - -
PSO | 2.1859 | 2.1987 | 10635 | 112 | 03-0.9 | 0 | 1253 2000 |
SA | 21924 | 22109 | 11690 | 120 | 0.6-1.4 | © 23.6 N
TS | 21858 | 22546 | 9200 | 421 | 03-3.4 | 0 64.6 ;
HA | 21797 | 2.1857 | 14365 | 320 | 0-03 | 12 | 1857 £ 1500
DP 2.1797 B B 0 100 | 2436 g
RESULTS FOR 24-YEAR PLANNING HORIZON 5
2 1000
Cost x 107§ | Exe f
Tech s | AFE | ANG | Ef,/“" §/R time &5
est Worst | (%) (%) (Hrs) 500
GA | 20356 | 2.0970 | 14380 | 412 | 0.526 | - 530 T y
DE 29262 | 2.9527 | 15193 | 390 | 0-1.1 - 5.46 B I T
EP | 29262 | 2.9556 | 14098 | 432 | 0212 | - 5.54 ol ol ol ol ol 1 okl i al:
ES 29301 | 29671 | 1109 | 418 | 0316 | - | 551 GA DE EP ES ACOPSO SA TS HA DP
ACO - - - - - - -
PSO | 29279 | 2.9608 | 13147 | 256 | 02-14 | - 315
SA 29262 | 2.9609 | 10110 | 187 | 0.2-1.4 | - 0.98
TS 20825 | 3.0135 | 11223 | 449 | 2132 | - 2.68
HA | 2.9206% | 2.9334 | 16328 | 441 | 0-0.43 | - 3.42
DP Unknown E 5
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Conclusion on Comparisons

@ Tuning of all algorithm by generic methods

e virtual mapping procedure (e.g. nyx type A power station,
ny X type B: use variable n that Cantor enumerates the array
formed by the pairs(ny, ny))

o intelligent initial population generation (does not observe
constraints but meets the demand plus a reserve margin)

e penalty factor approach (constraints are penalised, but not
deselected)

@ Dynamic programming (DP) is optimal when computable
@ Hybrid approach wins!

@ Among the others: DE is best (perhaps because 4 vectors are
“crossed over” instead of 2 in GA etc.)
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Intensification and diversification

NOG NOG NOG

oG

Diversification Tntensification

OG = solely guided by the objective function

NOG = solely guided by one or more function other than the
objective function

R = solely guided by randomness

C. Blum & A. Roli: Metaheuristics in Combinatorial Optimization: Overview and
Conceptual Comparison. ACM Computing Surveys 35:3, 2003, 268-308.
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A conclusion on MHQO: Intensification and diversification

“A metaheuristic will be successful on a given optimization problem
if it can provide a balance between the exploitation of the
accumulated search experience and the exploration of the search
space to identify regions with high quality solutions in a problem
specific, near optimal way.”

T. Stuetzle: Local Search Algorithms for Combinatorial Problems—Analysis,
Algorithms and New Applications. DISKI. infix, St. Augustin, 1999.
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The Genetic Code

Thymine
Adenine

5' end
@ md James Watson,
y Francis Crick,
b Maurice Wilkins
W S&ég\ and Rosalind
Phosphate. __ | oo < Franklin:
baciame .5*\@/2:2 }:55’“% DNA structure
% (hypothesis 1953,

h‘(lgﬁrﬁ“ Q«C&{ Nobel Prize 1962)

3 end Cytosine
Guanine 5 end
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The Genetic Code

The Genetic Code

DNA = deoxyribonucleic acid

DNA is made up of a chain of simple molecular units. Each unit comprises a
base, a sugar and a phosphate. The sugars and phosphates in many units link
together in a chain with the bases sticking out. The bases in two chains attract
one another resulting in a double helix structure.

There are just 4 kinds of base in DNA, labelled A, C, G and T (adenine, cytosine,
guanine, thymine). C and G pair up, as do A and T.

... GATTACCA . ..
... CTAATGGT . ..

George Gamow (1950s): Triplets as the elementary units of the
genetic code (codons) [he wrongly assumed ambiguity:
GGAC=GGA+GAC (please do not memorize!)]
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The Genetic Code

Encoding Proteins

How does this work?

Sections of chromosome contain the instructions for building chains of amino
acids — proteins. The proteins are the building blocks, regulation units and
manufacturing units of the body:

e.g. lactase (enzyme), collagen (structure), haemoglobin (oxygen transport),
actin (muscle contractions), CLOCK protein (circadian rhythm regulation).

Encoding: 3 DNA bases — 1 amino acid AAA = lysine
64 combinations — 20 amino acids CCC = proline
— some redundancy

A protein is made up of many amino acids strung together and folded up.
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Coding Principle

3 =64
combinations
from
3 base pairs
Encoding
20 amino acids
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Central Dogma of Molecular Biology

Central Dogma of Molecular Biology : Eukaryotic Model

THTA

Transcription and mRNA proces! UAG
! \/ 5 UnTransleted Region

3 Poly A tail

Translation

Post-Translational Modificatr

Active Protein
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Central Dogma of Molecular Biology

e Enunciated by Francis Crick in 1958 (Nature 1970)

o “Information cannot be transferred back from protein to either
protein or nucleic acid.”

@ In other words, “once information gets into protein, it can't
flow back to nucleic acid.”

From: DNA RNA Protein
To
DNA reverse transcription ?
RNA RNA replication ?
Protein direct translation prions?

, special transfer, unknown
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@ DNA Computing beyond metaphorics
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