
Natural Computing

Lecture 13

Michael Herrmann
mherrman@inf.ed.ac.uk
phone: 0131 6 517177
Informatics Forum 1.42

1/11/2011

Particle Swarm Optimisation and

Metaheuristic Optimisation

The canonical PSO algorithm

For each particle (for all members in the swarm) i = 1 . . . n

Create random vectors r1, r2 with components in U [0, 1]

update velocities

vi ← ωvi + α1r1 ◦ (x̂i − xi) + α2r2 ◦ (ĝ − xi)

◦: componentwise multiplication

update positions

xi ← xi + vi

update local bests (for a minimisation problem)
x̂i ← xi if f (xi) < f (x̂i)

update global best (for a minimisation problem)
ĝ ← xi if f (xi) < f (ĝ)

NAT13 1/11/2011 J. M. Herrmann

Relation to probabilistic methods

Probabilistic methods are ofter based on assumptions
(Gaussianity, optimal sampling, large sample size etc.)
which often do not hold in practical applications

Meta-heuristic approaches do well in many examples

Toy examples are often designed ad-hoc for a particular
method and are thus unsuitable for a fair comparison.
Success in real-world examples depends much on domain
knowledge, quality of analysis, iterative re-design etc.

Meta-heuristic algorithms can include strict algorithms for
local search

Meta-heuristic algorithms can be used to initialize, adapt,
optimize or tune the �exact� algorithms

NAT13 1/11/2011 J. M. Herrmann

Particle �lters

Given observations Yk ; reconstruct true states Xk
Initial distribution: p (X0|Y0) = p (X0)
Markovian evolution:
p
(
Xk |Y1,...k−1

)
=
∫
p (Xk |Xk−1) p

(
Xk−1|Y1,...k−1

)
Bayes' rule:

p
(
Xk |Y1,...k−1

)
=

p (Yk |Xk) p
(
Xk |Y1,...k−1

)
p
(
Yk |Y1,...,k−1

)
Represent posterior distribution by N weighted samples (here:
wk
i = 1

N
) obtained from:

p
(
Xk |Y1,...k−1

)
≈ 1

N

N∑
i=1

pi (Xk) : p
(
Xk |Y1,...k

)
∝

N∑
i=1

p (Yk |Xk) pi (Xk)

Problems: impoverishment and sample size e�ects (e.g. if the
likelihood is concentrated at the tail of the prior)

G. Tong, Z. Fang, X. Xu (2006) A PS optimized PF for non-linear system state
estimation. Proc. Congress on Evolutionary Computation, 438-442.

NAT13 1/11/2011 J. M. Herrmann

PSO PF

Use PSO for sampling

Standard PSO with Gaussian randomness in the velocity
update (�Gaussian swarm�)

Fitness: f exp

(
− 1

2Rk

(
ynew − ypred

)2)
Rk : observation covariance

Modulate weights: wk
i = wk−1

i p
(
yk |xki

)
, wk

i ←
wk
i∑N

j=1 w
k
j

Now represent posterior by weighted samples

Avoids divergence and does well with small number of particles

G. Tong, Z. Fang, X. Xu (2006) A PS optimized PF for non-linear system state
estimation. Proc. Congress on Evolutionary Computation, 438-442.

NAT13 1/11/2011 J. M. Herrmann

Comparison of GA and PSO

Similar in some respects:

1. Random generation of an initial population
2. Calculation of a �tness value for each individual.
3. Reproduction of the population based on �tness values.
4. If requirements are met, then stop. Otherwise go back to 2.

Modi�cation of individuals

In GA: by genetic operators
In PSO: Particles modify themselves via their own velocity.
Memory of their personal best. �Elitism� by global best.

Sharing of information

Mutual in GA. Population moves in groups to optimal areas.
One-way in PSO: Source of information is gBest (or lBest). All
particles tend to converge to the best solution quickly.

Representation

GA: usually discrete
PS: usually continuous

www.swarmintelligence.org/tutorials.php
NAT13 1/11/2011 J. M. Herrmann

Discrete Particle Swarm Optimization

A particle in a swarm

has a position and a velocity

knows its position & objective function value for this position

knows its neighbours, best previous position and objective
function value (or: current position & objective function value)

remember its best previous position

Behaviour determined by a compromise between three in�uences

To follow its own way (momentum, �self-con�dence�)

To go towards its best previous position (�experience�)

To go towards the best neighbour's best previous position, or
towards the best neighbour (�peer pressure�)

(see Maurice Clerc (Maurice.Clerc@WriteMe.com) http://www.mauriceclerc.net)

NAT13 1/11/2011 J. M. Herrmann

Canonical PSO

xi , vi ∈ Rd , 1 ≤ i ≤ n, r1, r2∈ Rd ,ω, α1, α2 ∈ R+,

f : Rd → R+ to be minimized

For all member of the swarm

vi := ωvi + α1r1 ◦ (x̂i − xi) + α2r2 ◦ (ĝ − xi)

xi := xi + vi

x̂i := xi if f (xi) < f (x̂i)

ĝ := xi if f (xi) < f (ĝ)

until termination criterion is met

NAT13 1/11/2011 J. M. Herrmann

Discrete PSO

States are implied by the optimisation problem, e.g. discrete: s ∈ Z

Option 1: Run the algorithm for continuous states x and
discretize [s = (int)

(
x + 1

2

)
] after a solution has been found

Option 2: If the objective function does not accept continuous
values then discretize before �tness evaluation

Option 3: Use discrete states s = x . The velocities are still
continuous but are incremented by discrete steps. When
updating s with a small velocity there is no e�ect, only from a
certain threshold s is actually changed. This could be
advisable if continuous values of the states have no meaning

Option 4: Use discrete states s = x and continuous velocities,
but rather consider velocities as probabilities of changing a
state (in particular for binary states).

Option 5: Use a more systematic approach (cf. below)

NAT13 1/11/2011 J. M. Herrmann

Example: Sequence alignment

Time-warped sequences qm(t), m = 1, . . . ,M, t ∈ [0,T]

Ideally, if we had the correct warping functions wm (t) for each
sequence then for all t

q1 (t + w1 (t)) = · · · = qM (t + wM (t))

More generally, we cannot assume exact equality, so we minimise

f [w] =
M∑

i ,j=1

∫
(qi (t + wi (t))− qj (t + wj (t)))2 dt

by choosing appropriate wm (t). This is an in�nite-dimensional
problem.

NAT13 1/11/2011 J. M. Herrmann

Example: Sequence alignment

Choose a discretization t = 1, . . . ,T (or use the natural
discretization of the data)

f [w] =
M∑

i ,j=1

T∑
t=1

(qi (t + wi (t))− qj (t + wj (t)))2

w is a M × T dimensional vector that can be used as state x in
PSO.

However, having discretized t only discrete values of w are
meaningful. Nevertheless, all of the above options are applicable.

Note of caution:

For all options, adaptive discretisation schemes might be useful.

Also the parameters ω, α1, α2 may have optimal values far from
the standard values for the continuous case.

NAT13 1/11/2011 J. M. Herrmann

Systematic approach to discrete PSO: Operator formalism

The PSO update rules require four operations:

Subtraction (position � position) operator:
two positions x1 and x2: x2 − x1 = v (velocity)

Multiplication (scalar coe�cient Ö velocity) operator:
learning coe�cient: α, ω, velocity v : c × v (velocity)

Addition (velocity ⊕ velocity) operator:
two velocities: v1 and v2: v1 ⊕ v2 (velocity)

Addition (position + velocity) operator:
position x and v velocity: x + v = x1 (position)

NAT13 1/11/2011 J. M. Herrmann

Example: Discrete PSO for TSP

Search space of positions/states S = {si}

Cost/objective function f on S maps into a set of values:
S → C = {ci}

Order on C, or, more generally, a semi-order: either ci < cj or
ci ≥ cj (if comparable)

If we want to use a physical neighbourhood, we also need a
distance d in the search space.

We are looking for Hamilton cycles in a weighted graph
G = {EG ,VG}

Enumber EG and search for sequences of N + 1 nodes with �rst
and last identical, otherwise di�erent.

f (s) =
∑N

i=1 wni ,ni+1 with nN+1 ≡ n0

NAT13 1/11/2011 J. M. Herrmann

Discrete velocities

What is a state? A vector containing N nodes

What is a velocity?

De�ne it as a permutation. Can be represented as a
composition of permutations of pairs of nodes (swaps)
Simplest case: the exchange of two nodes:
(..., i , ..., j , ...)→ (..., j , ..., i , ...), i.e. the cycle: (ij).
More generally: {(ik , jk)}

k=1,...,|v |

A negative velocity? Subtraction as inverted sequence of swaps

-v=
{(

i|v |−k+1, j|v |−k+1

)}
k=1,...,|v |

Adding a velocity to a state means applying a permutation (v)
to a set of objects (x)

NAT13 1/11/2011 J. M. Herrmann

Further operations

Di�erence between states?

permuation that transforms x1 into x2

Sum of velocities?

perform �rst the pair exchances of v1 than those of v2 (not
commutative; may be contracted into fewer pairs)

Multiplication by a scalar?

ω = 0 ⇒ ωv = Id

ω ∈ (0, 1]: remove all pairs from v after the dc |v |e-th swap.
ω > 1 concatenate (int)bcc-times and continue with dc |v |e
pairs from the beginning of v

NAT13 1/11/2011 J. M. Herrmann

Algorithm: Discrete PSO

vt+1 = ωvt ⊕ α1 (x∗ − xt)⊕ α2 (p − xt)

xt+1 = xt + vt+1

e.g. x∗ − xt is a velocity (transforming xt into x∗)

the three sets of swaps are concatenated (perhaps beginning
with ωvt , i.e. a part (for ω < 1) of the swaps in vt)

the result is applied to the ordered set that is represented by xt

How does this work?

Often better than GA or ACO. Why?

NAT13 1/11/2011 J. M. Herrmann

Meta-Heuristic Search

µετα �beyond�, ευρισκειν "to �nd�

Applied mainly to combinatorial
optimization

The user has to modify the algorithm
to a greater or lesser extend in order
to adapt it to speci�c problem

These algorithms seem to defy the
no-free lunch (NFL) theorem due to
the combination of

biased choice of problems
user-generated modi�cations

Can often be outperformed by a
problem-dependent heuristic

NAT13 1/11/2011 J. M. Herrmann

The General Scheme

1 Use populations of solutions/trials/individuals

2 Transfer information in the population from the best
individuals to others by selection+crossover/attraction

3 Maintain diversity by adding noise/mutations/ intrinsic
dynamics/amplifying di�erences

4 Avoid local minima (leapfrog/crossover/more noise/
subpopulations/border of instability/checking success, random
insertions)

5 Whenever possible, use building blocks/partial solutions/royal
road functions

6 Store good solutions in memory as best-sofar/ iteration
best/individual best/elite/pheromones

7 Use domain knowledge and intuition for encoding,
initialization, termination, choice of the algorithm

8 Tweak the parameters, develop your own variants

NAT13 1/11/2011 J. M. Herrmann

�Banal Metaheuristic�
*** in three easy steps ***

�� ��1. Call the user-provided state generator.

�� ��2. Print the resulting state.

�� ��3. Stop.

Given any two distinct metaheuristics M and N, and almost any
goal function f , it is usually possible to write a set of auxiliary
procedures that will make M �nd the optimum much more e�cient
than N, by many orders of magnitude; or viceversa. In fact, since
the auxiliary procedures are usually unrestricted, one can submit the
basic step of metaheuristic M as the generator or mutator for N.

en.wikipedia.org/wiki/Metaheuristic

NAT13 1/11/2011 J. M. Herrmann

Contra

No-free-lunch theorem implies that there must be some
implicit assumptions that single out �good� problems (one
such assumption is the correlation between goal function
values at nearby candidate solutions)

If these assumptions were made explicit more speci�c
algorithms could be designed

Random search often seems to be the essential component

The quality of a ME algorithm is not well-de�ned because
user-provided domain knowledge enters

There are many �classical� problems which are fully
understood and where ME algorithms perform comparatively
poor. (LS is usually not state of the art)

Dilettantism: A few hours of reading, thinking and
programming can easily save months of computer time used
up by ME

en.wikipedia.org/wiki/Metaheuristic

NAT13 1/11/2011 J. M. Herrmann

Pro

If you know a better solution then why using ME? But if not,
then why not?

Its not just random search

There are a number of applications where ME are performing
reasonably well

Theoretical expertise, problem analysis, modeling and
implementation are cost factors in real-world problems

There are domains where modeling is questionable, but the
combination of existing solutions is possible (minority games,
e.g. esthetic design, �nancial markets)

Nature is an important source of inspiration

It may help to understand decision making in nature and
society

NAT13 1/11/2011 J. M. Herrmann

Ecological niches for MH algorithms

PSO Mini Tutorial on Particle Swarm Optimisation (2004), Maurice.Clerc@WriteMe.com

NAT13 1/11/2011 J. M. Herrmann

Some of the dimensions of the problems space

NAT13 1/11/2011 J. M. Herrmann

Metaheuristic algorithms: What do they do?

Solving combinatorial optimization problems

Iteratively improving candidate solutions

Few assumptions about the problem

Usually population of candidate solutions

Some mechanism of accumulation of information about the
problem

NAT13 1/11/2011 J. M. Herrmann

De�nition of a Combinatorial Optimization Problem (COP)

(S ,Ω, f)
S is a search space de�ned over a �nite set of discrete decision
variables

S is contained in D = {v1, . . . , vD}
Ω is a set of constraints among the variables

SΩ: set of solutions that satisfy all constraints

f is an objective function to be maximised

Optimum (global maximum):
s∗ ∈ SΩ : f (s∗) ≥ f (s) ∀s ∈ SΩ

Task: Find at least one optimum

NAT13 1/11/2011 J. M. Herrmann

GA/GP and ACO as COPs

GA/GP ACO
S bit strings/trees paths in a graph
Ω correctness (GP) e.g. non-intersecting
f �tness total path length

SΩ correct programs
e.g. non-intersecting

paths

opt.
�ttest individual best

program on �tness cases
path of minimal length

NAT13 1/11/2011 J. M. Herrmann

Model-Based Search
Framework for expressing relation between algorithms

Scheme of the MBS approach

MBS approach with memory

E.g. in ACO:

Model: pheromone
matrix

Sample: ants
following pheromone
traces

Learning: pheromone
update

Auxilary memory:
best-so-far solution

Zlochrin, Birattari, Meuleau, Dorigo: Model-based Search for Combinatorial
Optimization: A Critical Survey. Annals of Operations Research 2004.

NAT13 1/11/2011 J. M. Herrmann

Model Based Search

Instance-based, i.e. improvement based on previous instance(s)
or

model-based: Candidate solutions are constructed using some
parameterized probabilistic model, that is, a parameterized
probability distribution over the solution space.

The candidate solutions are used to modify the model in a way
that is deemed to bias future sampling toward low cost
solutions.

Models enable theoretical predictions.

NAT13 1/11/2011 J. M. Herrmann

ACO as MBO

A �nite set C = c1, c2, . . . , cn of components (n is the
number of components)

A �nite set X of states of the problem, where a state is a
sequence x = ci , cj , . . . , ck , . . . over the elements of C . The
length of sequence x , i.e., the number of components in the
sequence, is expressed by |x |. The set of (candidate) solutions
S is a subset of X (i.e. S ⊆ X).

A set of feasible states Xf , with Xf ⊆ X , de�ned via a set of
constraints Ω

A non-empty set S∗ of optimal solutions, with S∗ ⊆ Xf and
S∗ ⊆ S

Formulation of the update in the hyper-cube framework

Result is a fully-connected weighted graph

NAT13 1/11/2011 J. M. Herrmann

GA as MBS

GA seems to be instance-based, but samples are not drawn
independently. Dependencies can be captured by a model:

Generate new solutions using the current probabilistic model

Replace (some of) the old solutions by the new ones.

Modify the model using the new population.

NAT13 1/11/2011 J. M. Herrmann

GA as MBS

compact Genetic Algorithm (cGA) (Harik et al., 1999)

Probabilistic (so far not di�erent from instance-based)
simulation of a GA with tournament selection:
Probabilistic model of the population: individuals are
generated by biased draws based on a probability vector. E.g.
if the vector entry pi is 0.9 it is likely to have a 1 at position i
in this individual's string.
Tournament selection: Choose two individuals a and b

(assume a wins)

if ai 6= bi then

if ai = 1 then pi ← pi +
1

n

else pi ← pi +
1

n

i.e. the model is updated by (similar to ACO)

pi ← pi +
1

n
(ai = bi)

NAT13 1/11/2011 J. M. Herrmann

GA as MBS

Bits in the genome were chosen independently. Now
model-based: What about schemata?

In order to capture the essential idea of GA (building blocks!)
the probabilistic model must be di�erent from the ACO model
(i.e. the pheromone matrix + update)

Modeling dependencies between string positions e.g.

learning a chain distribution as in ACO starting at the �rst
character of the string and setting the next one by a
conditional probability
by a matrix of pair-wise joint frequencies
by a forest of mutually independent dependency trees that
represent schemata
Bayesian networks

NAT13 1/11/2011 J. M. Herrmann

PSO as MBS

As in GA the �model� is actually a population (which can be
represented by a probabilistic model)

Generate new samples from the individual particles of the
previous iteration by random modi�cations

Use memory of global, neighborhood or personal best for
learning

NAT13 1/11/2011 J. M. Herrmann

It is thanks to these eccentrics, whose be-

haviour is not conform to the one of the other

bees, that all fruits sources around the colony

are so quickly found.

Karl von Frisch, 1927

PSO Mini Tutorial on Particle Swarm Optimisation (2004)
Maurice.Clerc@WriteMe.com

