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Swarm intelligence

Collective intelligence: A super-organism emerges from the
interaction of individuals

The super-organism has abilities that are not present in the
individuals (`is more intelligent')

�The whole is more than the sum of its parts�

Mechanisms: Cooperation and competition self-organisation,
. . . and communication

Examples: Social animals (incl. ants), smart mobs, immune
system, neural networks, internet, swarm robotics

Beni, G., Wang, J.: Swarm Intelligence in Cellular Robotic Systems, Proc. NATO
Adv. Workshop on Robots and Biological Systems, Tuscany, Italy, 26�30/6 (1989)
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Swarm intelligence: Application areas

Biological and social
modelling

Movie e�ects

Dynamic optimization

routing optimization
structure optimization
data mining, data
clustering

Organic computing

Swarm robotics
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Swarms in robotics and biology

AI/Robotics

Main interest in pattern
synthesis

Self-organization
Self-reproduction
Self-healing
Self-con�guration

Construction

Biology/Sociology

Main interest in pattern
analysis

Recognizing best pattern
Optimizing path
Minimal conditions
not �what�, but �why�

Modelling

Dumb parts, properly connected into a swarm, yield smart results.

Kevin Kelly
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Complex behaviour from simple rules

Rule 1: Separation
Avoid Collision with neighbouring
agents

Rule 2: Alignment

Match the velocity of neighbouring
agents

Rule 3: Cohesion
Stay near neighbouring agents
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Towards a computational principle

Evaluate your present position

Compare it to your previous best and neighbourhood best

Imitate self and others

Hypothesis: There are two major sources of cognition, namely,
own experience and communication from others.

Leon Festinger, 1954/1999, Social Communication and Cognition
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Particle Swarm Optimization (PSO)

Methods for �nding an optimal solution to an objective
function

Direct search, i.e. gradient free

Simple and quasi-identical units

Asynchronous; decentralized control

`Intermediate' number of units: ∼ 101 − 103 (or more)

Redundancy leads to reliability and adaptation

PSO is one of the computational algorithms in the �eld of
swarm intelligence (another one is ACO)

J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc. IEEE. Int. Conf.
on Neural Networks, Piscataway, NJ, pp. 1942�1948, 1995.
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PSO algorithm: Initialization

Fitness function f : Rm → R

Number of particles n = 20 . . . 200

Particle positions xi ∈ Rm, i = 1 . . . n

Particle velocities vi ∈ Rm, i = 1 . . . n

Current best of each particle
(�simple nostalgia�)

x̂i

Global best
(�group norm�)

ĝ

Constants ω, α1, α2
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The canonical PSO algorithm

For each particle (for all members in the swarm) i = 1 . . . n

Create random vectors r1, r2 with components in U [0, 1]

update velocities

vi ← ωvi + α1r1 ◦ (x̂i − xi) + α2r2 ◦ (ĝ − xi)

◦: componentwise multiplication

update positions

xi ← xi + vi

update local bests (for a minimisation problem)
x̂i ← xi if f (xi ) < f (x̂i )

update global best (for a minimisation problem)
ĝ ← xi if f (xi ) < f (ĝ)
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Initialisation

Initialize the particle positions and their velocities

X = lowerlimit+(upperlimit− lowerlimit)×rand(nparticles,mdimensions)

assert X .shape == (nparticles,mdimensions)

V = zeros(X .shape)

Initialize the global and local �tness to the worst possible

�tnessgbest =∞

�tnesslbest = �tnessgbest × ones(nparticles)

Initialize parameters

ω = 0.1 (range 0.01 . . . 0.7)

α1 = α2 = 2 (range 0 . . . 4, both equal)

n = 25 (range 20 . . . 200)

max velocity no larger than range of x (or 10-20% of this range)
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PSO:
do: [starts outer loop until termination]

cost_X = evaluate_cost(X) [evaluate cost of each particle]

for i = 1 .. n_particles: [update local bests]

if cost_X[i] < cost_lbest[i]:

cost_lbest[i] = cost_X[i]

for j = 1 .. m_dimensions:

X_lbest[i][j] = X[i][j];

end j; end i;

min_cost_idx = argmin(cost_X) [update global best]

min_cost = cost_X[min_cost_idx]

if min_cost < cost_gbest:

cost_gbest = min_cost;

X_gbest = X[min_cost_idx,:]

for i = 1 .. n_particles: [update velocities and positions]

for j = 0 .. m_dimensions:

R1/2 = uniform_random_number()

V[i][j] = (w*V[i][j] + α1*r2*(X_lbest[i][j] - X[i][j]) +
α2*r2*(X_gbest[j] - X[i][j])) X[i][j] = X[i][j] + V[i][j]

end j; end i; while not terminated;



How does it work?

Exploratory behaviour: Search a broad region of space

Exploitative behaviour: Locally oriented search to approach
a (possibly local) optimum

Obviously: Parameters to be chosen to properly balance between
exploration and exploitation, i.e. to avoid premature convergence to
a local optimum yet still ensure a good rate of convergence to the
optimum.
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Convergence

Failure: Swarm diverges or remains itinerant

Optimally: Global best approaches global optimum (swarm
may still oscillate)

Typically: Global best approaches a local optimum
(premature collapse of the swarm)

Mathematical attempts (typically oversimpli�ed): Convergence to
global optimum for a 1-particle swarm after in�nite time (F. v. d.
Bergh, 2001)

see PSO at en.wikipedia.org
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Analysis of PSO: Simpli�ed algorithm

Consider a single particle only (�the view from inside�)

Ignore randomness (use a homogeneous mean value)

Ignore the global best (assume it equals personal best)

Keep the personal best constant (changes are rare)

Set inertia to unity (for the moment only) i.e. what we had
(vector equation of i-th particle)

vi (t + 1)← ωvi + α1r1 ◦ (x̂i − xi (t)) + α2r2 ◦ (ĝ − xi (t))

becomes now

vid (t + 1) = vid (t) + φ (pid − xid (t)), i = 1 . . . n, d = 1 . . . m

(in component form:d = 1 . . . m with pi = x̂i )
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Algebraic point of view

Introduce y (t) = p − x (t) in v (t + 1) = v (t) + φ (p − x (t))

x (t + 1)= x(t)+v (t + 1) ⇒

{
v (t + 1) = v (t) + φy (t)

y (t + 1) = −v (t) + (1− φ) y (t)

Introduce state vector P (t) = (v (t) , y (t))> and

M =

(
1 φ
−1 1− φ

)
Starting from the initial state P (0) we have P (t) = MtP (0)

M. Clerc & J. Kennedy (2002) The particle swarm � Explosion, stability, and

convergence in a multidimensional complex space. IEEE Transactions on

Evolutionary Computation 7:1, 58-73.
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Algebraic point of view

Determine eigenvalues of

M =

(
1 φ
−1 1− φ

)
, i.e. AMA−1 = L =

(
e1 0
0 e2

)

⇒ e1/2 = 1− φ

2
±
√
φ2 − 4φ

2

Transformation matrix: P (t) = MtP (0)

P (t + 1) = A−1LAP (t)

⇒ AP (t + 1) = LAP (t)

Q (t + 1) = LQ (t)

with Q = AP and A =

(
φ+

√
φ2 − 4φ 2φ

φ−
√
φ2 − 4φ 2φ

)

Thus Q (t) = LtQ (0) where Lt =

(
e1 0
0 e2

)t

=

(
et1 0
0 et2

)
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Algebraic point of view

Three cases:

0 < φ < 4 φ = 4 φ > 4

EV complex Both EV equal −1 Exponentially
divergent

e1/2 = cos (θ)± i sin (θ)
et1/2 = cos (tθ)± i sin (tθ)

Oscillatory with
period k ifθ = 2kπ

t

MV = −V
P (t + 1) = −P (t)

Oscillatory behaviour:
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Implications from the algebra

Oscillation for φ < 4: Exploration near current best

Divergence for φ > 4: Exploration of the wider environment

φ = α1 + α2 is a combination of the attractiveness of the personal
and global best. Since these might be not the same (often they
are), a slightly larger φ might be needed.

φ slightly above 4 (e.g. 4.1): particle stays somewhere in between
or near personal and global best. If these two coincide the algorithm
tends to diverge, i.e. the particle moves on searching elsewhere.

Divergence can be counteracted by Vmax or by constriction.

Remember that we were considering an averaged version of the
algorithm.
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Constriction factor in canonical PSO

Introduced by Clerc (1999/2000)

vi ← K (ωvi + α1r1 ◦ (x̂i − xi ) + α2r2 ◦ (ĝ − xi ))

Simplest form (other de�nitions possible):

K = 2∣∣∣2−φ−√φ2−4φ∣∣∣ , where φ = α1 + α2 > 4

e.g. φ = 4.1 ⇒ K = 0.729, i.e. e�ectively α ≈ 1.5

By de�nition K = 1 for φ ≤ 4

K may include inertia ω (i.e. set ω = 1)

Can improve convergence by a forced decay
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Innovative topologies

Speci�ed by: Mean degree, clustering, heterogeneity etc.
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Topology: Restricted competition/coordination

Topology: Restricted competition/coordination

Topology determines with whom to compare and thus how
solutions spread through the population

gbest is determined only among neighbours; lbest as usual

Global version is faster but might converge to local optimum
for some problems.

Local version is a somewhat slower, not easily trapped into
local optimum.

Combination: Use global version to get rough estimate. Then
use local version to re�ne the search.

For some topologies analogous to islands in GA
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Fully Informed Particle Swarm (FIPS)

Rui Mendes et al. (2004): �Simpler, maybe better�

Distribute total φ across neighbours using weights W(k)
which are chosen according to quality

All neighbours contribute to
the velocity adjustment

Best neighbour is not selected,
all contribute with prob. pm

Individual m itself is not
included in its own
neighbourhood Nm

rk = U

[
0,

rmax
|N |

]
∀k ∈ N

U equi-distr. random vector

w ∈ R|N| weight vector:

swarm follows weighted

average rather than best

Pm =

∑
k∈N wk rk ◦ x̂k∑

k∈N wk rk

w can be constant or �tness-dependent

Fails quite often, but results are, if successful, good (strongly
dependent on good topology)

NAT12 28/10/2011 J. M. Herrmann



FIPS: Two performance metrics (Pareto plot)

Cyan: Topologies with
average degree in the
interval (4, 4.25).

Green: Topologies
with average degree in
the interval (3, 3.25)
and clustering
coe�cient in the
interval (0.1, 0.6).

canonical PSO

Magenta: Topologies with average degree in the interval (3,
3.25) and clustering coe�cient in the interval (0.7, 0.9).

Red: Topologies with average degree in the interval (5,6) and
clustering coe�cient in the interval (0.025, 0.4).

Black: All other topologies (including canonical PSO)

=⇒ Topology is important if appropriately exploited.
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Remarks on PSO

Consider boundaries the counteract divergence as physical
(e.g. by re�ection from walls)

Try adaptive versions: variable swarm size, variable ratios
α1/α2

Try di�erent topologies (e.g. �tribes�)

For local variants, consider using other norms in
high-dimensional spaces (volume of the Euclidean unit sphere
volume decays as N →∞)
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Parameters, Conditions, & Tweaks

Initialization methods

Population size

Population diameter

Absolute vs. signed velocities

Population topology

Births, deaths, migration

Limiting domain (XMAX, VMAX)

Multiobjective optimization

�Subvector� techniques

Comparison over problem spaces

Hybrids

Jim Kennedy Russ
Eberhart: Tutorial on
Particle Swarm
Optimization
IEEE Swarm
Intelligence
Symposium 2005
Pasadena, California
USA, June 8, 2005
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Applications

Evolving structure and weights of neural networks

Complex control involving complex and continuous variables
(power systems)

Industrial mixer in combination with classical optimization

Image analysis

Medical diagnosis

Job scheduling

Robot path planning, localization

Electrical generator

Electrical vehicle

Sampling of probabilistic models
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Literature on swarms

Eric Bonabeau, Marco Dorigo, Guy Theraulaz: Swarm
Intelligence: From Natural to Arti�cial Systems (Santa Fe
Institute Studies on the Sciences of Complexity) OUP USA
(1999)
J. Kennedy, and R. Eberhart, Particle swarm optimization, in
Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway,
NJ, pp. 1942�1948, 1995.
Y Shi, RC Eberhart (1999) Parameter selection in particle
swarm optimization. Springer.
RC Eberhart Y. Shi (2001) PSO: Developments, applications
resources. IEEE.
www.engr.iupui.edu/~eberhart/web/PSObook.html (content
only)
Advanced problems (free book)
www.intechopen.com/books/show/title/particle_swarm_optimization
Tutorials: www.particleswarm.info/
Applications: http://cswww.essex.ac.uk/technical-
reports/2007/tr-csm469.pdf NAT12 28/10/2011 J. M. Herrmann


