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ACO (in brief)

ACO

Represent solution space

Set parameters, initialize pheromone trails

SCHEDULE_ACTIVITIES

ConstructAntSolutions
DaemonActions {optional}
UpdatePheromones
Check termination condition

END_SCHEDULE_ACTIVITIES
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ACO algorithm
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Variants: Ant System (AS)

Pheromone trails: Initialise τij = τ0 � 1

τij ← ρτij + (1− ρ)
n∑

k=1

∆τkij

∆τkij =

{
1
Lk

if ant k used edge (i , j) in its tour

0 otherwise

Probability rule

p
(
cij |spk

)
=


τα
ij
ηβ
ij∑

cim∈N(ski ) τα
ij
ηβ
ij

if j ∈ N
(
ski
)

0 otherwise

cij : graph edge, ski partial solution of ant k sofar incl. arrival to i ,
N set of possible continuations of ski (e.g. towards j if j ∈ N

(
ski
)
.

see: Dorigo et al. 1991/92 and www.scholarpedia.org/article/Ant_colony_optimization
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Variants: Ant Colony System (ACS)

Pheromone trails: Initialise τij = τ0 � 1

Local pheromone update

τij ← ρτij + (1− ρ)
n∑

k=1

∆τ0

in addition to global update (best ant contribution)

τij ← ρτij + (1− ρ) ∆τbestij

∆τbestij =

{
1
Lk

if best ant used edge (i , j) in its tour

0 otherwise

Pseudorandom propotional rule: Use probability rule with prob. q0

p
(
cij |spk

)
=


τα
ij
ηβ
ij∑

cim∈N(ski ) τα
ij
ηβ
ij

if j ∈ N
(
ski
)

0 otherwise

or make a random (admissible) transition otherwise.
see: Dorigo and Gambardella 1997
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Variants: Max-Min Ant System (MMAS)

Best ant adds to the pheromone trails (iteration best or best so far)

Initialise e.g. τij = τmax = 1
pL∗ where L

∗ best sofar known optimum

τij ← ρτij + (1− ρ)
n∑

k=1

∆τbestij

Pheromone production by the best ant only

∆τbestij =

{
1
Lk

if best ant used edge (i , j) in its tour

0 otherwise

Minimum and maximum value of the pheromone are explicitely
limited by τmin and τmax (truncation).

Pseudorandom propotional rule

p
(
cij |spk

)
=


τα
ij
ηβ
ij∑

cim∈N(ski ) τα
ij
ηβ
ij

if j ∈ N
(
ski
)

0 otherwise

see: Dorigo and Gambardella 1997
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Variants: Max-Min Ant System (MMAS)

Comments

τmin is small and guarantees continuous exploration (may be
reduced in order to enforce convergence.

τmax causes all non-visited regions to be equally attractive
(pheromone update can be restricted to the links that were actually visited, but
you will need fast evaporation in this case)

If τmax is not very large it can prevent over-exploration of
frequently used regions or may be set to the largest pheromone
value that is possible in the given ant system.

In the face of stagnation the paths can reinitialized by τmax

Essentially two more parameters to play with.
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ACO variants

ACO variant Authors Year

Elitist AS (EAS) Dorigo 1992

Continuous ACO
(CACO)

Bilchev and I.C. Parmee
Dorigo, Maniezzo, and Colorni

1995
1996

Ant Colony System
(ACS)

Dorigo and Gambardella 1997

Rank-based AS
(RAS)

Bullnheimer, Hartl, and
Strauss

1999

Max-Min Ant
System (MMAS)

Stützle and Hoos 2000

Continous
Orthogonal
(COAC)

Hu, Zhang, and Li 2008

Hyper-Cube
Framework (HCF)

Blum and Dorigo 2004
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Properties of ACO in a numerical experiment
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Properties of ACO in a numerical experiment

Dorigo et al.: Ant System: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics B26:1 (1996) 1-13
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Numerical experiment

Dorigo et al.: Ant System: Optimization by a colony of cooperating agents. IEEE
Transactions on Systems, Man, and Cybernetics B26:1 (1996) 1-13
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Theoretical results: Overview

Convergence in probability of an ACO algorithm (Gutjahr
2000) [Theoretical bounds]

Run-time analysis

Understanding ACO: Search biases

Hypercube framework

Relations to other optimization algorithms (later)
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ACO: Convergence

For simpli�ed algorithms; bounds not very tight

Given a lower bound for the pheromones the algorithm
explores everywhere and must therefore �nd an optimal
solution given su�ciently long time, i.e.

Theorem (Dorigo & Stuetzle): Let p*(t) be the probability that
ACO (best-so-far update and lower bound for pheromones) �nds an
optimal solution at least once within the �rst t iterations. Then, for
an arbitrarily small ε > 0 and for a su�ciently large t it holds that:
p*(t) = 1=ε and asymptotically limt→∞ p*(t) = 1.

Logarithmic decrease of τmin is also OK, i.e. τmin = c/ log(t)

Safe convergence times can be very large!

This was for MMAS. For standard AS, ρ should approach 1
(for large t) as 1− c/(t log(t)) which might be too fast to
reach good solutions unless c is appropriately chosen
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Run-time analysis

Results for very simple problems such as �needle in a haystack�
(only one optimum and �at elsewhere) and �all-ones�
(ONE-MAX: one optimum reachable from everywhere)

For large evaporation rate (unrealistic!): identical to (1+1)-ES
(i.e. weakly exponential)

For small evaporation rates polynomial complexity can be
achieved (for ONE-MAX) Neumann & Witt (2007)

Comparing MMAS and 1-ANT (only one ant with rescaled
pheromone update): Depends on evaporation rate. Run-time
can be O(n2) for MMAS when 1-ANT has already exponential
run-time (Gutjahr and Sebastiani 2007)
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Search Biases

A desirable search bias towards good zones of the search space
is given by the pheromones

Negative search bias caused by selection �xpoints

Negative search bias caused by an unfair competition

Note: For these theoretical considerations sometimes local
heuristic information is ignored (e.g. setting β = 0), i.e. the
question is: How does ACO work beyond local search?

M. Dorigo, C. Blum: Theoretical Computer Science 344 (2005) 243 � 278
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Selection �x-points: Ant number

Why using more than one ant per iteration? Wouldn't the
algorithm work with only one ant?

τij (t + 1)← ρτij (t) + (1− ρ) ∆τij

∆τij = P
(
cij |ski

)
=

τij∑
k τik (t)

Pheromones tend towards τij = ∆τij

E�ect increases with problem size. (Merkle & Middendorf 2004)

Single-ant algorithms need to use very slow evaporation and are therefore less
likely to explore well before stagnation. Or, if stagnation is prevented (e.g. by
τmin > 0) they are very slow.

Several ants building a common pheromone matrix may contribute various
�building blocks� to a solution that is likely to be followed by the ants of later
generations.

Competition between the ants is a driving force of ACO algorithms.

Analogous to but not generally the same as in GA: Ants are more likely to test
various combinations of good part-solutions (�building blocks�)
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Selection �x-points: Constraints

The adaptation of the pheromone matrix depends also on the
number of ants having passed a solution component

In unconstrained problems all nodes of the underlying graph
have the same degree

In constrained problems the degree may di�er such that poor
regions with low degrees become more attractive than good
regions with high degree

One can construct examples where the increased exploration of
the bad regions lead to a �xed point of the algorithm or a local
minimum of the search problem
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Bias by an �unfair� competition

Unconstrained ACOs always improve the iteration quality
(expected value of the ants' performance) or are stationary

Constrained problem: minimal k-cardinality sub-tree

Minise w.r.t. weights:

Optimal solution shoud contain e1 or e4.
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Bias by an �unfair� competition

Start solution with empty set and add nodes sequentially

Fitness values

k = 2 gives (2 × �on�, 2 × �o��)

The outer routes will still get less pheromone (for AS), good
solutions are not equally sampled

The branching paths get twice as much update although they
lead to a larger expected cost
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Bias by an unfair competition

Quality decreases (!) when starting from a homogeneous initial
pheromone matrix

The impact of the pheromone value update increases and the
expected iteration quality decreases faster

Note: Here quality is �tness (inverse costs)
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Search space: �Hyper-cube framework�

Given a solution (path) s = (s1, . . . , sn)

The solution is a subsets of the edges E of a graph G = (N,E )

Partitioning of E : if a link belongs to s: 1 otherwise 0

For TSP, s can be
represented by a binary
vector with dimension
M = n(n − 1)/2 [in case
of TSP, generally this
would be total number
of available solution
components]

Pheromones are updated
in the span of admissible
solutions

The HCF is not an algorithm, but a framework which applies
for several variants
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Search space: �Hyper-cube framework�

Pheromone update (cj = s ij if it is a component of solution i)

τj ← ρτj +
∑k

i=1 ∆τ ij where ∆τ ij =


1

f (s i)
if cj ∈ s i

0 otherwise

limt→∞ τi (t) ≤ 1
1−ρ ·

k

f
(
sopt

) Maximal if all k ants follow forever

the optimal solution: τi = ρτi + k

f
(
sopt

)
τ = (τ1, . . . , τM) is an M-dimensional vector: τ ∈

[
τmin, τmax

]M
M: number of solution components (e.g. all edges of a graph)

τ =
∑
αi s i , αi ∈

[
τmin, τmax

]
, s i ∈ {0, 1}M , w.l.o.g. αj ∈ [0, 1]

only used components of s i being 1, elsewhere 0s

Blum, Roli, Dorigo (2001) HC-ACO. 4th Metaheuristics Int. Conf., 399-403.
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Search space: �Hyper-cube framework�

A binarised solution s = (s1, . . . , sM) is a subset of the edges
E of a graph G = (N,E ) indicated by si being 1 or 0.

Pheromone normalisation

τj ← ρτj +
∑k

i=1 ∆τ ij where ∆τ ij =


1

f (si )∑k
l=1

1

f (sl)
if cj ∈ s i

0 otherwise

Hyper-cube update rule (µ = 1− ρ)

τ ← τ + µ (d − τ)

d = (d1, . . . , dM) where dj =
∑k

i=1

1
f (si )∑k

l=1
1

f (sl)
, j = 1, . . . ,M

Pheromones are updated in the span of the solutions
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Search space: �Hyper-cube framework�

τ ← τ + µ (d − τ)

The pheromone vector moves a bit towards the weighted mean of
the solutions produced by the current iteration.
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Bene�ts of the Hyper-cube framework

Probabilistic interpretation (in the absence of constraints)

Proof that expected quality of solutions strictly increases
(without the assumption of an in�nitesimal step size as in
standard gradient methods!)

A diversi�cation scheme

global desirability: vdesj ← max
{

1

f (s) : s ∈ Sants, sj = 1
}

global frequency: v frj ←
∑

s∈Sants
sj

Sants : all solutions generated since the start

At stagnation the algorithm may be restarted with a
pheromone (n × n) matrix (or vector in n(n − 1)/2

dimensions) constructed from vdes or the regularised inverse

of v fr in order to keep good solutions, but also to favour
regions where few ants have been before.
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Conclusion on ACO

Cooperative scheme: Building a common solution

Prone to premature convergence (can be controlled by minimal
pheromone level, by adjusting evaporation rate or reinitialising
the pheromone levels)

some theory exists, points to analogies among metaheuristic
serach algorithms

Applications in scheduling, route planing and any problem that
can be brought into this form

next time: PSO
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