
Natural Computing

Lecture 9

Michael Herrmann
mherrman@inf.ed.ac.uk
phone: 0131 6 517177
Informatics Forum 1.42

18/10/2011

Genetic Programming:

Examples and Theory:

see: http://www.genetic-programming.org, http://www.geneticprogramming.us

Example 1: Learning to Plan using GP

Aim:

To �nd a program to transform any initial state into �UNIVERSAL�

NAT09 18/10/2011 J. M. Herrmann

Genetic Programming: Learning to Plan

Terminals:

CS � returns the current stack's top block

TB � returns the highest correct block in the stack (or NIL)

NN � next needed block, i.e. the one above TB in the goal

Functions:

MS(x) � move block x from table to the current stack. Return
T if does something, else NIL.

MT(x) � move x to the table

DU(exp1, exp2) � do exp1 until exp2 becomes TRUE

NOT(exp1) � logical not (or exp1 is not executable)

EQ(exp1, exp2) � test for equality

NAT09 18/10/2011 J. M. Herrmann

Learning to Plan: Results

Generation 0: (EQ (MT CS) NN) 0 �tness cases

Generation 5: (DU (MS NN) (NOT NN)) 10 �tness cases

Generation 10: (EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))

166 �tness cases

population size 500

Koza shows how to amend the �tness function for e�cient, small
programs: Combined �tness measure rewards

Correctness (number of solved �tess cases)

AND e�ciency (moving as few blocks as possible)

AND small number of tree nodes (parsimony: number of
symbols in the string)

NAT09 18/10/2011 J. M. Herrmann

Automatically De�ned Functions

�E�cient code�: Loops, subroutines, functions, classes, or . . .
variables

Automatically de�ned iterations (ADIs), automatically de�ned
loops (ADLs) and automatically de�ned recursions (ADRs)
provide means to re-use code. (Koza)

Automatically de�ned stores
(ADSs) provide means to
re-use the result of
executing code.

Solution: function- de�ning
branches (i.e., ADFs) and
result-producing branches
(the RPB)

e.g. RPB: ADF(ADF(ADF(x))), where ADF: arg0Öarg0

NAT09 18/10/2011 J. M. Herrmann

Example 2: The Santa Fe Trail

Objective: To evolve a program which eats all the food on a trail
without searching too much when there are gaps in the trail.
Sensor can see the next cell in the direction it is facing

Terminals: move, (turn) left, (turn) right

Functions: if-food-ahead, progn2, progn3 (unconditional
connectives: evaluate 2 or 3 arguments in the given order)

Program with high �tness:

(if-food-ahead move

(progn3

left

(progn2 (if-food-ahead move right)

(progn2 right (progn2 left right)))

(progn2 (if-food-ahead move left) move)

)
)

Fitness: E.g. amount of food collected in 400 time steps
NAT09 18/10/2011 J. M. Herrmann

Genetic programming: A practical example

Photo: Selena von Eichendorf

NAT09 18/10/2011 J. M. Herrmann

Evolving Structures

Example: Design of electronic circuits by composing

Non-terminals: e.g. frequency multiplier, integrator, recti�er,
resistors, wiring ...

Terminals: input and output, pulse waves, noise generator

Structure usually not tree-like: Meaningful substructures
(�boxes� or subtrees) for crossover and structural mutations

Fitness by desired input-output relation (e.g. by wide-band
frequency response)

NAT09 18/10/2011 J. M. Herrmann

Initialisation

The initial population might be lost quickly, but general
features may determine the solutions

Assume the functions and terminal are su�cient

Structural properties of the expected solution (uniformity,
symmetry, depth, . . .)

Practical: Start at root and choose k = 0, ...,K with
probability p (k), choose a non-terminal with k > 0 arguments
or a terminal for k = 0. If k > 0 repeat until no non-terminals
are left or if maximal depth is reached (then k = 0)

Lagrange initialisation: Crossover can be shown to produce
programs with a typical distribution (Lagrange distribution of
the second kind) which can be used also for initialization

Seeding: Start with many copies of good candidates

Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008) A Field Guide to Genetic Programming.

NAT09 18/10/2011 J. M. Herrmann

Genetic Programming: General Points

Su�ciency of the representation: Appropriate choice of
non-terminals

Variables: Terminals (variables) implied by the problem

Is there a bug in the code? Closure: Typed algorithms,
grammar based encoding

Program structure: Terminals also for auxiliary variables or
pointers to (automatically de�ned) functions

There are no silver bullets: Expect multiple runs (each with a
population of solutions)

Local search: Terminals (numbers) can often be found by
hill-climbing

Can you trust your results? Fitness: From �tness cases using
crossvalidation (e.g. for symbolic regression)

Tree-related operators: Shrink, hoist, grow (in addition to
standard mutation and crossover)

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Troubleshooting

Study your populations: Analyse means and variances of
�tness, depth, size, code used, run time, ... and correlations
among these

Runs can be very long: Checkpoint results (e.g. mean �tness)

Control bloat in order to obtain small e�cient programs: Size
limitations prevent unreasonable growth of programs e.g. by
soft thresholds

Control parameters during run-time

Small changes can have big e�ects

Big changes can have no e�ect

Encourage diversity and save good candidates,

Embrace approximation: No program is error-free

NAT09 18/10/2011 J. M. Herrmann

GP: Application Areas

Problem areas involving many variables that are interrelated in
a non-linear or unknown way (predicting electricity demand)
A good approximate solution is satisfactory

design, control (e.g. in simulations), classi�cation and pattern
recognition, data mining, system identi�cation and forecasting

Discovery of the size and shape of the solution is a major part
of the problem
Areas where humans �nd it di�cult to write programs

parallel computers, cellular automata, multi-agent strategies,
distributed AI, FPGAs

"Black art" problems
synthesis of topology and sizing of analog circuits, synthesis of
topology and tuning of controllers, quantum computing circuits

Areas where you simply have no idea how to program a
solution, but where the objective (�tness measure) is clear
(e.g. generation of �nancial trading rules)

Areas where large computerised databases are accumulating
and computerized techniques are needed to analyse the data

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Theory

Schema theorem (sub-tree at a
particular position)

worst case (Koza 1992)
exact for one-point crossover
(Poli 2000)
for many types of crossover
(Poli et al., 2003)

Markov chain theory
Two functions are equivalent if they coin-
cide after a permutation of inputs. Pro-
gram trees are composed of NAND gates.

Distribution of �tness in search space (s. �gure)

as the length of programs increases, the proportion of
programs implementing a function approaches a limit

Halting probability

for programs of length L is of order 1/L1/2, while the expected
number of instructions executed by halting programs is of
order L1/2.

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Bloat

Bloat is an increase in
program size that is not
accompanied by any
corresponding increase in
�tness. Problem: The
optimal solution might still
be a large program From: Genetic Programming by Riccardo Poli

Theories (none of these is universally accepted) focus on

replication accuracy theory
inactive code
nature of program search-spaces theory
crossover bias (1-step-mean constant, but �Lagrange� variance)

Size-evolution equation (similar to exact schema theorem)

Practical solutions: Size and depth limits, parsimony pressure
(�tness reduced by size: f - c l(i))

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Bloat Control

Constant: constant target size of 150.
Sin: target size
sin((generation + 1)/50)× 50 + 150.
Linear: target size (150 + generation).
Limited: no size control until the size
reached 250 then hard-limited.
Local: adaptive target size
c = −Cov(l , f)/Var(l): a certain
amount of drift, avoided runaway bloat.

Average program size over 500 generations for multiple runs of the
6-MUX problem [decode a 2-bit address and return the value from the
corresponding register] with various forms of parsimony pressure.

Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008) A Field Guide to Genetic Programming.

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Theory

GP applied to �one-then-zeros�
problem: independently of tree
structure �tness is maximal if
all nodes have a identical sym-
bol. Expected to bloat, but
doesn't. Why?

E. Crane and N. McPhee The E�ects of Size and Depth Limits on Tree Based Genetic Programming

NAT09 18/10/2011 J. M. Herrmann

Genetic programming: Control parameters

Representation and �tness function

Population size (thousands or millions of individuals)

Probabilities of applying genetic operators

reproduction (unmodi�ed) 0.08
crossover: 0.9
mutation 0.01
architecture altering operations 0.01

Limits on the size, depth, run time of the programs

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory
Following: Genetic Programming by Riccardo Poli (University of Essex)

Exact schema theoretic models of GP have become available
only recently (�rst proof for a simpli�ed case: Poli 2001)

For a given schema H the selection/crossover/mutation
process can be seen as a Bernoulli trial, because a newly
created individual either samples or does not sample H

Therefore, the number of individuals sampling H at the next
generation, m (H, t + 1) is a binomially stochastic variable

So, if we denote with α (H, t) the success probability of each
trial (i.e. the probability that a newly created individual
samples H), an exact schema theorem is simply
E [m (H, t + 1)] = Mα (H, t), where M is the population size
and E [·] is the mathematical expectation.

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory

Variable size tree structure does not permit the same de�nition
of a schema as in GA

A schema is a (sub-)tree with some �don't-care� nodes (�)

A schema represents a primitive function (or a terminal)

E.g. H = (� x (+y �)
represents the programs
{(+x(+x y) , (+x (+y y)) , (∗x (+y x)) , . . . }
(pre�x notation, � can be terminal or non-terminal)

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory

Assume: Only reproduction and one-o�spring crossover are
performed (no mutation)

α (H, t) the success probability can be calculated because the
two operators are mutually exclusive

α (H, t) = Pr [an individual in H is obtained via reproduction]

+ Pr [an o�spring matching H is produced by crossover]

Reproduction is performed with probability pr and crossover
with probability pc (pr + pc = 1), so

α (H, t) = prPr [an individual in H is selected for cloning]

+ pcPr

[
parents and crossover points are
such that the o�spring matches H

]
where Pr [an individual in H is selected for cloning] = p (H, t)

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory

Pr

»
parents and crossover points are
such that the o�spring matches H

–

=
X

For all pairs of
parent shapes k, l

X
For all crossover points

i , j in shapes k, l

Pr

»
Choosing crossover points
i and j in shapes k and l

–

× Pr

»
Selecting parents with shapes k and lsuch that if

crossed over at points i and j produce and o�spring in H

–

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory

Crossover excises a subtree rooted at the chosen crossover
point in a parent , and replaces it with a subtree excises from
the chosen crossover point in the other parent.

This means that the o�spring will have the right shape and
primitives to match the schema of interest if and only if, after
the excision of the chosen subtree, the �rst parent has shape
and primitives compatible with the schema, and the subtree to
be inserted has shape and primitives compatible with the
schema.

Assume that crossover points are selected with uniform
probability

Pr

[
Choosing crossover points
i and j in shapes k and l

]
=

1

Nodes in shape k
× 1

Nodes in shape l

NAT09 18/10/2011 J. M. Herrmann

Exact Schema Theory

Pr

[
Selecting parents with shapes k and lsuch that if

crossed over at points i and j produce and o�spring in H

]
Pr

[
Selecting a root-donating parent with shape ksuch that its upper
part w.r.t crossover point i matches the upper part of Hw.r.t. j

]
Pr

[
Selecting a subtree-donating parent with shape lsuch that its lower
part w.r.t crossover point j matches the lower part of Hw.r.t. i

]
These two selection probabilities can be calculated exactly, but this
requires a bit more work cf. R. Poli and N. F. McPhee (2003)
General schema theory for GP with subtree swapping crossover:
Parts I&II. Evolutionary Computation 11 (1&2).

NAT09 18/10/2011 J. M. Herrmann

Conclusions on GP

In order to be successful GP algorithms need well structured
problems and lots of computing power

GPs have proven very successful in many applications, see the
lists of success stories in Poli's talk, in Koza's tutorial and in
GA in the news (many of these were actually GPs)

GP provide an interesting view on the art of programming

Exact schema theoretic models of GP have started shedding
some light on fundamental questions regarding the how and
why GP works and have also started providing useful recipes
for practitioners.

Next time: Ant Colony Optimisation (ACO)

NAT09 18/10/2011 J. M. Herrmann

