
Natural Computing

Lecture 8

Michael Herrmann
mherrman@inf.ed.ac.uk
phone: 0131 6 517177
Informatics Forum 1.42

14/10/2011

Di�erential Evolution (DE) and
Genetic Programming (GP)



Di�erential Evolution
for Continuous Function Optimization

Algorithm by Kenneth Price and Rainer Storn

Individuals are continuous vectors (direct encoding)

Using vector di�erences for mutating the vector population

�This way no separate probability distribution has to be used
which makes the scheme completely self-organizing.�

Small population size (usually up to 40)

Mutation and crossover (only loosely related to the biological
picture)

NAT08 14/10/2011 J. M. Herrmann



Di�erential Evolution
Properties and parameters

�Contour matching�: vector population adapts such that
promising regions of the objective function surface are
investigated automatically once they are detected

�Swarm intelligence�: Interaction among individuals is
important, see PSO (later)

Two parameters: weighting constant F , crossover constant C

Typical values: F = 0.5 . . . 0.8 (F ≥
√

(1− C/2) /N),
C = 0.1 . . . 0.9 (if the problem is separable, C can be smaller),
4 < N ≈ 5D

Check the applet at www.icsi.berkeley.edu/~storn/code.html

NAT08 14/10/2011 J. M. Herrmann



Di�erential Evolution: Algorithm

Population of N vectors of D-dimensions: xi , i = 1, 2, ...,N

Step 1: vi (t + 1) = xq (t) + F · (xr (t)− xs (t));

q, r , s are random indexes, all di�erent and di�erent from i .
Note that vi has nothing to do with xi ! (t: generation counter)
(In a sense: three parents, but this is considered as mutation in DE)

F ∈ [0, 2] ⊂ R (possible ampli�cation of the di�erential variation)

Step 2: Choose random numbers ρj ∈ [0, 1], j ∈ {1, . . . ,D}

uji (t + 1) =

{
vji (t + 1) if ρj ≤ C

xji (t) if ρj > C

or by choosing a block
j ∈ [n, (n + L)modD],
L ≤ D, 1 ≤ n ≤ D where L

is randomly changed.

ui ,t+1 = (u1i (t + 1) , u2i (t + 1) , . . . , uDi (t + 1))

Selection: xi (t + 1) = ui (t + 1) if ui (t + 1) is better than xi (t),
otherwise xi (t + 1) = xi (t)

Rainer Storn & Kenneth Price (1997) Di�erential Evolution � A Simple and E�cient Heuristic for
Global Optimization over Continuous Spaces. Journal of Global Optimization 11: 341�359.

NAT08 14/10/2011 J. M. Herrmann



Di�erential Evolution

Rainer Storn and
Kenneth Price:
Di�erential Evolution -
A simple and e�cient
adaptive scheme for
global optimization over
continuous spaces, TR.

NAT08 14/10/2011 J. M. Herrmann





Di�erential Evolution: Basin-to-Basin Transfer

Peaks function a) and illustration of di�erence vectors b) that
promote transfer of points between two basins of attraction of the
objective function surface
Rainer Storn (2008) Di�erential Evolution Research � Trends and Open Questions. Chapter 1 of Uday
K. Chakraborty: Advances in Di�erential Evolution

NAT08 14/10/2011 J. M. Herrmann



Di�erential Evolution

E�ect of the factor F . Varying F is also used to dither (randomly
mutate) the solution in the direction of the di�erence vector

NAT08 14/10/2011 J. M. Herrmann



DE: Mutation and Crossover

Example for a population of N = 8 points and a mutation step a).
The �gure on the right b) shows the potential points when using

crossover.

NAT08 14/10/2011 J. M. Herrmann



DE: Example

Generation t = 1 using N = 8

NAT08 14/10/2011 J. M. Herrmann



DE: Example

Generation t = 10 using N = 8. The di�erence vector distribution
(only endpoints shown) exhibits three main clouds where the outer

ones promote the transfer between two basins of attraction.

NAT08 14/10/2011 J. M. Herrmann



DE: Example

Generation t = 20 using N = 8. Now the di�erence vector
distribution fosters the local search of the minimum the vector

population is enclosing.

NAT08 14/10/2011 J. M. Herrmann



Di�erential Evolution: Variants

Mutability and threshold parameters can also be evolved for
each individual (as the step sizes in ES), i.e. dimension
becomesD + 2.

Various methods for diversi�cation of the population: Jitter,
dither, mixing perturbations, mirroring (opposition), ...

Scheme for denoting DE variants:

x speci�es the vector to be mutated which currently can be
�rand� (a randomly chosen population vector) or �best� (the
vector of highest �tness from the current population)
y is the number of di�erence vectors used
z denotes the crossover scheme. The current variant is �bin�
(crossover due to independent binomial experiments)

e.g. DE/best/2/bin (previously we had DE/rand/1/bin)
vi (t + 1) = xbest (t) + f · (xp (t) + xq (t)− xr (t)− xs (t))

Also a number of self-adapting variants exist cf. [Storn, 2008]

NAT08 14/10/2011 J. M. Herrmann



ES and DE: Conclusion

Metaheuristic search algorithms

Adaptive parameters important

Relations to Gaussian adaptation

Both the advanced versions of ES and DE compare favourably
to other metaheuristic algorithms (see e.g.
www.lri.fr/~Hansen)

Diversity of the population of solutions needs often to be
maintained by problem-dependent strategies (Mutations in DE,
complex populations in ES)

Relation to particle swarm optimisation (PSO) [later]

See also www.scholarpedia.org/article/Evolution_strategies

NAT08 14/10/2011 J. M. Herrmann



Evolutionary algorithms

NAT08 14/10/2011 J. M. Herrmann



Genetic Programming

Genetic programming now
routinely delivers high-return
human-competitive machine
intelligence.

Genetic programming is an
automated invention machine.

Genetic programming can
automatically create a general
solution to a problem in the
form of a parametrized topology.

Computer programs are the
lingua franca for expressing the
solutions to a wide variety of
problems

Statements by John R. Koza et al. (2003)

NAT08 14/10/2011 J. M. Herrmann



Evolving Programs

Is it possible to create computer programs by evolutionary
means?

Let P(0) be a population of randomly generated programs pi
For each pi , run it on some input and see what it does. Rate it
for �tness based on how well it does.

Breed the �tter members of P(0) to produce P(1)
If happy with the behaviour of the best program produced then
stop.

. . . but how?

Literature: Riccardo Poli, William B. Langdon, Nicholas F. McPhee
(2008) A Field Guide to Genetic Programming (gp-�eld-guide.org.uk)

NAT08 14/10/2011 J. M. Herrmann



How?

What language should the candidate programs be expressed in?

C, Python, Java, Pascal, Perl, Lisp, Machine code?

How can you generate an initial population?

How can you run programs safely? Consider errors, in�nite
loops, etc.?

How can you rate a program for �tness?

Given two selected programs, how can they be bred to create
o�spring?

What about subroutines, procedures, data types,
encapsulation, etc.

What about small, e�cient programs?

NAT08 14/10/2011 J. M. Herrmann



Koza: Evolving LISP programs

Lisp as a functional
language

f (x , y) is written as (f x y)
10− (3+ 4) is written as (− 10 (+ 3 4))

Lisp programs can be represented as trees

f (x) = x2 + 3
f (x) = (+ (∗ x x) 3)
Here, + and ∗ are function
symbols (non-terminals) of
arity, x and 3 are terminals.
Given a random bag of
terminals and non-terminals,
we can make programs.

(Peter Seibel: Practical Common Lisp, 2004)

NAT08 14/10/2011 J. M. Herrmann



Random Programs and Closure

If we generate a random program:
How can we avoid an error?

Another random program
How can we evaluate this?

All function calls need to return a result

Closure: E.g. rede�ne division by zero to return FLT_MAX or
zero; Overload operators to deal with variable numbers of
arguments

Su�ciency:Set of nonterminals need to be su�ciently large,
terminals need to be de�ned (if not given by data)

NAT08 14/10/2011 J. M. Herrmann



Grammar-Based Constraints (see GAs)

Typing or grammar-based approaches help to achieve closure

Riccardo Poli, William B. Langdon, Nicholas F. McPhee (2008) A Field Guide
to Genetic Programming

NAT08 14/10/2011 J. M. Herrmann



Fitness cases

How do we rate a program for �tness?

Answer: Run it on some �typical� input data for which we know
what the output should be. The hope is the evolved program will
work for all other cases (use crossvalidation!!).

Example: Symbolic regression on
planetary orbits (Kepler's law). Given
a set of values of independent and
dependent variables, come up with a
function that gives the values of the
dependent variables in terms of the
values of the independent variables.

Planet A P

Venus 0.72 0.61

Earth 1.00 1.00

Mars 1.52 1.84

Jupiter 5.20 11.9

Saturn 9.53 29.4

Uranus 19.1 83.5

Kepler's third law: Square of the period P of the planet
proportional to cube of semimajor axis A, i.e. P = A3/2.

NAT08 14/10/2011 J. M. Herrmann



Fitness Function

Given a number of example pairs (xj , yj) of data vectors xj and
desired outputs yj , we could use the deviations of the generated
program for an evaluation:

Eraw =
∑
j

‖GP (xj)− yj‖2

For a �tness function we could adjust

Fadj =
1

1 + Eraw

and normalise (or rank)

Fnorm (i) =
Fadj (i)∑
k Fadj (k)

... so most �t is 1, least �t is 0 (i , j , k are the �tness cases)
NAT08 14/10/2011 J. M. Herrmann



Crossover

How can we cross programs? Subtree crossover

Koza's orginal (1988-92) GP system used only crossover, to try to demonstrate
that GP is �more than a mutation�.

NAT08 14/10/2011 J. M. Herrmann



Mutation

How can we mutate a
program?
Lots of other forms of
mutation are possible, e.g.
hoist, shrink

shrink: replace a subtree
by one of its terminals

hoist: use only a subtree
as a mutant

subtree or �grow�-mutation

or: vary numbers, exchange symbols, exchange subtrees, . . .

NAT08 14/10/2011 J. M. Herrmann



GP Algorithm

1 Choose a set of functions and terminals for the program you
want to evolve:

non-terminals e.g.: if, /,* , +, =, sqrt, <, >. . .
terminals e.g.: x , y , =10, =9, . . . , 9, 10

2 Generate an initial random population of trees of maximum
depth d

3 Calculate the �tness of each program in the population using
the chosen �tness cases.

4 Apply selection, subtree crossover (and subtree mutation) to
form a new population.

Example parameter values:
Population size = 10000
Crossover rate = 0.9

Selection: Fitness proportionate

NAT08 14/10/2011 J. M. Herrmann





Example: GP for Symbolic Regression

Data:

x y

-1 1.00

-0.8 0.84

-0.6 0.76

-0.4 0.76

-0.2 0.84

0.0 1.00

0.2 1.24

0.4 1.56

0.6 1.96

0.8 2.44

1 3.00

Design:

From: J. R. Koza: GA and GP (tutorial)

NAT08 14/10/2011 J. M. Herrmann



Example: GP for Symbolic Regression

Population of 4 randomly generated individuals for generation 0

NAT08 14/10/2011 J. M. Herrmann



Example: GP for Symbolic Regression

Goal function: f (x) = x2 + x + 1

Performance of the individual programs

x + 1

0.67

x2 + 1

1.00

2

1.70

x

2.67

The algorithm uses only the �tness calculated from the given data.

NAT08 14/10/2011 J. M. Herrmann



Example: GP for Symbolic Regression

Copy of (a)
Mutant of (c)
picking �2� as
mutation point

First o�spring of
crossover of (a)
and (b) picking
�+� of parent
(a) and
left-most �x� of
parent (b) as
crossover points

Second o�spring
of crossover of
(a) and (b)
picking �+� of
parent (a) and
left-most �x� of
parent (b) as
crossover points

NAT08 14/10/2011 J. M. Herrmann



GP: Application Areas

Problem areas involving many variables that are interrelated in
a non-linear or unknown way

A good approximate solution is satisfactory
design, control, classi�cation and pattern recognition, data mining,
system identi�cation and forecasting

Discovery of the size and shape of the solution is a major part
of the problem

Areas where humans �nd it di�cult to write
programs parallel computers, cellular automata, multi-agent
strategies/distributed AI, FPGAs

"Black art" problems
synthesis of topology and sizing of analog circuits, synthesis of
topology and tuning of controllers, quantum computing circuits

Areas where you simply have no idea how to program a
solution, but where the objective (�tness measure) is clear

Areas where large computerized databases are accumulating
and computerized techniques are needed to analyze the data

NAT08 14/10/2011 J. M. Herrmann


