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Lamarckism

Characterised by

Inheritance of acquired traits

Use and disuse determine characteristics

More speci�cally, Lamarck provided a syste-
matic theoretical framework for understanding
evolution as the interplay of two processes

A complexifying force: in which the natural, alchemical
movements of �uids would etch out organs from tissues,
leading to ever more complex construction regardless of the
organ's use or disuse. This would drive organisms from simple
to complex forms.
An adaptive force: in which the use and disuse of characters
led organisms to become more adapted to their environment.
This would take organisms sideways o� the path from simple
to complex, specialising them for their environment.

wikipedia on Jean-Baptiste Lamarck
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The Baldwin e�ect

�A new factor in evolution� (James
Baldwin, 1896)

Selection for learning ability (rather than
relying only on �xed abilities from the
genes)

Increased �exibility: Robustness to
changes in the environment (i.e. changes
of the �tness function)

[University of Toronto]

Selective pressure may lead to a translation of learned abilities
into genetic information!

Learning has a cost
If learning of the same tasks increases �tness over many
generations then those individuals have a relatively higher
�tness that produce (parts of) these results by their genetically
�xed abilities
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Computational studies

Hinton & Nowlan: How learning can guide evolution (1987)
(see M. Mitchell, Chapter 3)

Binary genome plus undecided bits which are set in �life� by
learning

Whitley, Gordon & Mathias: Lamarckian evolution, the
Baldwin e�ect and function optimisation (1994)

Standard GA (elitist) plus:
Lamarckian evolution
(editing strings) or
Baldwinian evolution
(adaptation process before
�tness determination)

[technically in both cases: hill-climbing in the �tness landscape]

Lamarckian faster, but Baldwinian less likely to be trapped by
local optima
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Hybrid GA: Evolving Neural Networks

Reminder of neural networks

Inspired by the function of neurons in the brain
Universal function approximators
Used for: Prediction, classi�cation, pattern completion,
control, modelling the brain

In connection to GA

Evolving weights
Evolving network topology
Evolving grammars
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Neural networks: Basics

Nodes (neurons) and connections
(synapses)

Weights (e�cacies) attached to the
connections

Output from a node (spike or �ring rate)
depends on the weighted sum of inputs to
the node

Non-linear activation (threshold) function

Often arranged in layers (areas) or as a
recurrent structure

Training algorithms to determine the
weights (error-backpropagation)

[wikipedia]
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A simple feed-forward neural network

Activity of a node yi depends on inputs xj

Weight wij from node j to node i

Each node (apart from the input nodes) takes the weighted
sum of its inputs and feeds the result through a sigmoid
function, yi = 1

1+e−ui
where ui =

∑L
j=1

wijxj

Output activity is often input to another node (xk = yi )
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Evolving weights

Evolve weights rather than train the network directly

Alternative to error backpropagtion

Classi�cation of underwater sonic recordings (Montana &
Davis, 1989)

network topology:

4 input nodes
7 nodes in �rst hidden layer
10 nodes in second hidden layer
1 output node
fully connected

18 extra thresholding connections (biases)
total weights 126 → GA chromosome as a list 126 real valued
weights
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Representation of a neural network

Chromosome: (0.3, -0.4, 0.2, -0.3, 0.7, 0.8, -0.1, -0.3)

Building blocks: all incoming weights to a given unit

Mutation: for each incoming link to a chosen node, add a
(di�erent) random value between -1 and +1

Crossover: for each non-input node, cross all the weights of
parent 1 with all the weights of parent 2 (Montana-Davis
crossover)
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Results of the weight evolution

Reward function: Match of
desired output (from examples)
and actual network output

GA were better than
(supervised) BP on some tasks

Selection as 'unsupervised' learning (individual networks are
not changed here in order to produce a better output)

Useful if only sparse reinforcement is available (e.g. if the
networks controls a robot in an unfamiliar environment)

Backpropagation does not work well if subsequent inputs are
correlated and may su�er from local minima, so GA may have
an advantage in some cases
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Evolving topology (subject to constraints)

Choosing a network topology is hard

Leave weight adaptation to the neural network learning and
determine the connectivity by a GA

Connectivity matrix (cf. Miller, Todd & Hegde, 1989)

from unit
to unit

1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 0
3 1 1 0 0 0
4 1 1 0 0 0
5 0 0 1 1 0

Chromosome: 00000 00000 11000 11000 00110

Mutation: bit �ipping

Crossover: exchange whole rows

Constraints: Feed-forward topology (lower-triangular matrix), no
self-connections (zero diagonal)
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Grammatical Encoding

Grammatical encoding of the linkage matrix (here for XOR)

(S → AB C D |A → c p a c |B → a a a e | . . . )

S →
A B

C D
→

c p a a

a c a e

a a a a

a a a b

→

1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

Generate connection matrix from grammar. If at the end of
rewriting there are still non-terminal nodes, that node is �dead�
(not connected)
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Grammatical Encoding

Develop chromosome (genotype) into network (phenotype) and
train for �xed number of training episodes

Fitness: Error at the end of training

Problems in direct encoding

Fixed connections: as size of
matrix grows, chromosome size
grows
Many generation until
convergence
Cannot encode repeated patterns
(weight sharing), especially with
internal structure

Advantages of grammars

Representation of large connec-
tion matrices in compact form
Shorter encoding → faster search
Variable topologies including
recurrent connections
Empirically better than direct
encoding (e.g. auto-encoder
problem)
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Neuro-Evolution though Augmenting Topologies (NEAT)

Evolve by changing the connection weights, turning links on and o�
and also by adding links and nodes (in the middle of an existing
link) (in the mutation stage)

Start o� simple, become more complex (with a punishment for
complexity in the �tness function)

Crossover: Match up parts of the network coding or similar traits

Competing conventions: Permuting a hidden nodes of a network
does not change the output or the function computed by the
network

So: give each gene an innovation number: the next unused integer
with a new structure is added. So the algorithm can match up
parts of networks inheriting this gene in future generation
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Neuro-Evolution though Augmenting Topologies (NEAT)

Inherit matching genes from each parent with equal probability.
Inherit non-matching genes from �ttest parent

Can also split into species (�islands�) based on di�erence between
chromosomes (based on number of matching genes and other
metrics (e.g. output errors). Preserves new topology for a while so
that it has a chance to optimise its structure only in competition
with similar members

Works well on pole-balancing. Also applied to game of Go

Stanley & Miikulainen Evolutionary Computing 10, 99-127 (2002)
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Neuro-Evolution though Augmenting Topologies (NEAT)

Above: Justi�cation of
�innovation numbers�

Right: Visualisation of
speciation in a double pole
balancing task

Stanley & Miikulainen Evolutionary Computing 10, 99-127 (2002)
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Hyper-NEAT
Hypercube-Based Encoding for Evolving Large-Scale Neural Networks

Compositional pattern-producing networks: Patterns with
symmetries and repeating motifs (canonical microcircuit)
Scale ANNs to new numbers of inputs and outputs without
further evolution.
Recognition of symmetries and repetitions in 2D images by a
hierarchical encoding scheme

Stanley, D'Ambrosio, Gauci (2009)
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Hyper-NEAT
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Grammatical Encoding (Summary)

Representation: Represent together what belongs together

Grammatical encoding allows for re-using building blocks

weight-sharing
compositionality of behaviour
hierarchical representation

Special operators that respect the rules

Special protection for important rules

Nontrivial genotype - phenotype relation
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Evolving Neuromodules for Control

F. Pasemann et al. (1999) Evolving structure and function of neurocontrollers. MIS preprint
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Evolving Robots Learn To Lie To Each Other

1,000 robots divided into 10 groups

Each robot had a sensor, a blue light, and a
264-bit binary genome encoding a controller

Initial population: turn the light on at food
resource, supporting also other robots

Positive �tness points for �nding and sitting
at the good resource, negative for being near
the poison

200 �ttest robots are selected, recombined
and mutated

Near optimal �tness after 9 generations

A limited amount of food results in
overcrowding

After 500 generations: 60 % of the robots kept their light o� near food
Other robots adapted to this and developed an aversion to the light

Sara Mitria, Dario Floreano and Laurent Keller (2009) The evolution of information suppression in
communicating robots with con�icting interests. PNAS
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