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The Schema Theorem
From last lecture

E (m (H, t + 1)) ≥ û(H,t)

f̄ (t)
m (H, t)

(
1− Pc

d(H)
L−1

)
(1− pm)o(H)

Highest
when

schema �tness
û (H, t) = 1

m(H,t)

∑
ci∈H m (ci , t) f (ci , t) is large (�t)

de�ning length d (H) is small (short)

order o (H) is small (small number of de�ned bits)

The Schema Theorem in words:

Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic algorithm.
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The Building Block Hypothesis

During crossover, �building blocks� become exchanged and
combined

So the Schema Theorem identi�es the building blocks of a good
solution although it only addresses the disruptive e�ects of
crossover (but the constructive e�ects of crossover are supposed to
be a large part of why GA work).
How do we address the constructive e�ects?

Building block hypothesis (BBH): A genetic algorithm seeks
optimal performance through the juxtaposition of short, low-
order, high-performance schemata, called the building blocks.

Crossover combines short, low-order schemata into increasingly �t
candidate solutions

short low-order, high-�tness schemata
�stepping stone� solutions which combine Hi and Hj to create
even higher �tness schemata
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The Building Block Hypothesis
Experimental Evidence

The Building Block Hypothesis is a hypothesis � so we can do an experiment to test it.

Experiment: Use a problem which contains explicit building blocks
and observe the population. Do the building blocks combine to give
a good solution in the way the BBH predicts?

Mitchel, Forrest, Holland set up such a problem, using Royal Road
(RR) functions. Details: Mitchel, Chapter 4, pp 127-133.

De�ne �tness in terms of particular schemata:
Substrings that, if present in a population ought to be combinable
into the optimal solution.
They should lay out a �Royal Road� to the global optimum.

The �rst RR function R1 is de�ned using a list of schemata si .
Each si has a �tness coe�cient ci . The �tness R1 (x) of a bit string

x is given by: R1 (x) =
∑

i ciδi , δi (x) =

{
1 if x ∈ si

0 otherwise
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Royal Road Functions

Simple example using 16 bits. Suppose:

s1 = 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

s2 = ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

s3 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗

s4 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1

and suppose c1 = c2 = c3 = c4 = 4 and

Sopt = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Then R1

(
Sopt

)
=
∑4

i=1 ciδi

(
Sopt

)
= 16

Take the string 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1. It samples matches s1
and s4. So δ1 (x) = δ4 (x) = 1 and δ2 (x) = δ3 (x) = 0.

And R1 (1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1) = 8

Colors red and blue are used here only for visibility of the blocks.
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Royal Road Functions

Several Royal Road functions de�ned in terms of di�erent
combinations of schemata with building blocks at di�erent levels,
e.g. 4 contiguous 1s, 8 contiguous 1s, 16 contiguous 1s, etc.

Try to evolve the string with all 1s and compare performance of GA
against a number of hill-climbing schemes

Steepest-ascent hill climbing (SAHC)

Next-ascent hill climbing (NAHC)

Random mutation hill climbing (RMHC)

Will the GA do better?
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Steepest-ascent hill climbing (SAHC)

1 Let current-best be a random string

2 From left to right �ip each bit in the string. Record �tness of
each one-bit mutant and �ip the bit back to its previous state.

3 If any mutant is �tter than current-best, set current-best to
�ttest mutant and goto 2.

4 If no �tness increase, save current-best and goto 1.

5 After N evaluations return �ttest current-best
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Next-ascent hill climbing (NAHC)

1 Let current-best be a random string

2 From left to right, �ip each bit in the string. If no �tness
increase, �ip it back. If �tness increases, set current-best to
new string and continue mutation new string form one bit
after the bit at which the �tness increase was found.

3 If no �tness increase, save current-best and goto 1.

4 After N evaluations return �ttest current-best
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Random-mutation hill climbing (RMHC)

1 Let current-best be a random string

2 Flip a random bit in the current-best. If no �tness decrease,
set current-best to mutated string

3 Repeat 2. until optimal string found or N evaluations
completed

4 Return �ttest current-best

See Mitchel p. 129 for these algorithms.
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Hill-Climbing vs. GA: Results

Number of evaluations to �nd optimal string (max: 256,000)

200 runs GA SAHC NAHC RMHC

Mean 61,334 >max >max 6,179

Median 54,208 >max >max 5,775

Why did the GA do worse than RMHC? When do GAs perform
well?

By Markov chain analysis, RMHC's expected time is ≈ 6549
evaluations. OK.
What's going wrong with the GA? Larger combinations of the
schemata si in the GA get broken up by crossover and
disrupted by mutation.
GA su�ers from �hitch-hiking�: Once an instance of a
high-�tness schema is discovered, the �un�t� material,
especially that just next to the �t part, spreads along with the
�t material. Slows discovery of good schemata in those
positions.
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Hitch-Hiking: Example
Example: Two schemata against one.

Suppose:

Individual X1: '1 1 1 1 0 1 0 0 1 1 1 1 1 0 0 1': �tness R (X1) = 8

Individual X2: '0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1': �tness R (X2) = 4

Fitness of individual X1 will be reduced due to crossover with
probability 11

15pc
A single mutation may reduce �tness
Suppose X1 has above-average �tness and X2 below-average
�tness. Then X2 might be extinct before successfully crossed
with X1. The population will have to rediscover the second
schema. Before rediscovery the �hitch-hiking� substring
'0 1 0 0' of X1 survives because of the �tness which is due to
its neighboring schemata.
Near the global optimum progress becomes more di�cult.
Sampling of the di�erent regions is not independent.

See Mitchell Fig. 4.2, p. 133, for hitch-hiking e�ect.
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Analysis

Easy problem, no-local minima (so hill-climbing works, RMHS
explores systematically across �at regions)

GA will out-perform HC on parallel machines (why?)

GA will no sample evenly. The statement of the schema
theorem becomes questionable. If partitions were sampled
independently, schema theorem would make meaningful
predictions.
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Idealised GA

Mitchell proposes an idealised GA (IGA)

Sample a new string Xi uniform-randomly

If Xi contains a new desired schema, keep it and cross it over
with previous best string to incorporate new schema into the
solution

IGA aims to sample each partition independently and tends to
keep best schemata in each partition � static Building Block
Hypothesis

It works, and it's N times faster than HC

IGA is unusable in practice (why?) but gives us a lower bound
on the time GA needs to �nd optimal string.

In IGA each new string is an independent sample, whereas in
RMHC each new sample di�ers from the previous by only one
bit � so RMHC takes longer to construct building blocks

So we have some clues as to when GAs will do well. (Reading: Mitchell Ch. 4)
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When do GAs do better than Hill-Climbing

To act like an ideal GA and outperform hill-climbing (at least in
this sort of landscape) we need

Independent samples: Big enough population, slow enough
selection, high enough mutations rate, so that no bit-positions
are �xed at the same value in every chromosome

Keeping desired schemata: Strong enough selection to keep
desired schemata but slow enough selection to avoid
hitch-hiking. It is possible to protect bits (by lower pm, pc)
that were responsible for a strong �tness increase.

We want crossover to cross over good schemata quickly when
they are found to make better chromosomes (but we don't
want crossover to disrupt solutions)

Large N, long string so that speed-up over RMHC is worth it

Not possible to satisfy all constraints at once � tailor to your
problem
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Where now?

Schema theorem starts to give us an idea of how GAs work
but is �awed → need better mathematical models of GA
convergence ...

... but these better models do not make our GA go faster.
Can we �x it empirically? Fix what, exactly?

1 Standard GA �nds good areas, but lacks �killer instinct� to �nd
the globally best solution

2 Standard crossover often disrupts good solutions late in the run
3 Binary representations of non-binary problems ofter slow the

GA down rather than allowing it to sample more freely. (The
�Hamming Cli��)
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Variants of GAs
Selection

Roulette wheel (see above)

Non-linear distortions of the �tness function (e.g. steeper for
better �tnesses)

Tournament selection (especially for relative �tnesses, e.g.
evolving a strategy for a game

select a pair of individual and keep two copies of the winner of
the tournament
keep one copy of the winner plus with probability pt a copy of
the winner and with probability 1− pt a copy of the looser

Elitism: best individuals are moved unchanged to the next
generation

'Pocket' algorithms remember the current best

Insertion of a few new random individuals in each generation

NAT05 04/10/2011 J. M. Herrmann



Variants of GAs
Crossover

1-point

2-point, . . . , n-point

Cut and splice (a di�erent cutting point in each of the parents,
children of di�erent length)

Half-uniform crossover scheme (exactly half of the
non-matching bits are swapped)

More than two parents

Respecting problem structure (and possibly schemata)

Elitist crossover

Islands: crossover mostly within groups (more generally:
topology or networks)
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Variants
Mutation

Point mutation: �ip or random

Exchange two randomly chosen characters (perhaps coupled
mutations)

Inversion

Respecting problem structure (and possibly schemata)

Fitness-dependent (e.g. mutation rate zero for current best
and maximal for worst)

Adaptive mutation rates
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Tournament selection vs. Roulette Wheel selection

Roulette Wheel selection (see above)

May be used on (raw) �tness values or rank (here: rank)
Chance of survival in a single run (for rank i):
p = (2i)/(n2 + n) (at least one from n runs P = 1− (1− p)n
for the �rst variant)
Best (rank n): p = 2/(n + 1), worst (rank 1): p = 2/(n2 + n)
Roulette wheel with elitism is fairly similar to tournament

Tournament selection (n winners from n tournaments)

Chance of survival depends on rank: P = (i − 1)/(n− 1) (rank
is used for analysis and does not need to be known for the
algorithm)
selection for tournament may also depend on rank
best (rank n) individual beats any other: P = 1
worst (rank 1) P = 0
Outcome of a tournament may be stochastic (add elitism)
Main advantage: Can be used if �tness function cannot be
calculated explicitly, e.g. in the evolution of chess players
Better parallelisable
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Making it better

Change the crossover probability towards the end of run

Start the GA from good initial position (seeding). If you know
roughly where a solution might lie, use this information.

Use a representation close to the problem: Does not have to
be a �xed length linear binary string � avoid the Hamming Cli�

Use operators that suit the representation chosen, e.g.
crossover only in speci�c positions

Run on parallel machines: Island model GA (Evolve isolated
subpopulations, allow to migrate at intervals)

Reading: Mitchell Chapter 4
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Behaviour near the optimal solution

Want to get from good to best individuals. (�killer instinct� or
�exploitation�)

[De Jong] Say range of payo� values is [1,100]. Quickly get
population with �tness say in [99,100]. Selective di�erential
between best individual and rest, e.g. 99.988 and 100 is very small.
Why should GA prefer one over another?

Dynamically scale �tness as a function of generations or �tness
range

Use rank-proportional selection to main a constant selection
di�erential. Slows down initial convergence but increases
�exploitation� in the �nal stages.

Elitism. Keep best individual so far, or, selectively replace
worst members of population

Aim is to shift balance from exploration at start to exploitation at
end
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Towards Memetic Algorithms

Hill-climbing local neighborhood search is a fast single solution
methods which quickly gets stuck in local optima (Cf. SAHC,
NAHC)

Genetic algorithms are a multi-solution technique which �nd
good approximate solution which non-local optima

Hence: Try applying local search (LS) to each member of a
population after crossover/mutation has been applied. We
might �nd locally better solutions, and if near the end of run
�nd the best/optimal solution.

GH +LS = Memetic Algorithm
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Memetic Algorithms

1st generation: Hybrid algorithms

evolutionary algorithm + local re�nement (development and
learning)

2nd generation: Hyper-heuristic MA (Lamarckian)

includes evolution of the learning algorithm(s) by selection of
memes

3rd generation: Co-evolution, self-generating MA

co-adaptation of the representation of memes including
discovery of new memes
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Outlook

Biological background

Hybrid algorithms

Practical aspects

Genetic programming

Continuous evolutionary algorithms

ACO, PSO
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