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Reminder: The Canonical Genetic Algorithm

1 Old population

2 Roulette-wheel selection

3 Intermediate population

4 Single point recombination with
rate pc (per pair of individuals)

5 Mutation with rate pm (per
position in all strings)

1 New population (repeat until
termination)

one generation

A population is a (multi-) set of individuals

An individual (genotype, chromosome) is encoded by a string
S ∈ AL (A: alphabet; canonical: A = {0, 1}, L �xed)

Normalised �tness represents the objective of the problem
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Search Spaces as Hypercubes

Binary encoding: solution c ∈ {0, 1}L

⇒ Each Solution is a corner of the hypercube.

e.g. c = (0, 1, 0) for L = 3 or c = (0110) for L = 4

Sets of solutions:

(0, ∗, 0) denotes a line
(∗, 1, ∗) denotes a plane

From a tutorial by Erik D. Goldman GECCO09

(1, ∗, ∗, ∗) denotes a subcube.
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Schemata (J. Holland, 1975)

A schema is a string that contains wildcards (�*�), but not
only asterisks, i.e. schema H ∈ {0, 1, ∗}L \ {∗}L

A schema de�nes a set of solutions (which coincide at the
no-wildcard symbols)

All (inheritable) features of the phenotype are encoded by
schemata

The order of the schema is the number of bits that are actually
there, e.g. **01***1 is a schema of order 3 (and length 8)

There are 3L − 1 di�erent schemata (not counting the schema
of order 0: ** . . . *)

Each solution is part of 2L hyperplanes (or 2L − 1 schemata)

Implicit parallelism: Each individual samples many hyperplanes
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How do GAs work?
The schema theorem (J. Holland, 1975)

How does selection improve �tness?

What is the fate of the schemata in face of selection, mutation
and and crossover?

Goal:

E (m (H, t + 1)) ≥ û(H,t)

f̄ (t)
m (H, t)

(
1− Pc

d(H)
L−1

)
(1− pm)o(H)

H is a schema

There are m individuals carrying this schema

t counts generations

E is the mathematical expectation
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The Schema Theorem
(before starting the proof)

Consider �rst an individual solution ci ∈ AL:

f (ci , t): �tness of solution ci in generation t

m (ci , t): number of copies of ci in the population in generation t

f̄ (t): average �tness of the population in generation t

E (m (ci , t + 1)) = f (ci ,t)

f̄ (t)
m (ci , t)

E (·) is the expected value
1
n

f (ci ,t)

f̄ (t)
the probability of selecting ci

f̄ = 1
n

∑n
i=1 f (ci )

n: population size

So above-average-�tness strings get more copies in the next
generation and below average �tness strings get fewer.
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The Schema Theorem
Growth of �t subpopulations

Suppose ci has above-average �tness of (1 + δ) f̄ (i.e. δ > 0). Then

E (m (ci , t + 1)) = f (ci )

f̄
m (ci , t) = (1+δ)f̄

f̄
m (ci , t) = (1 + δ)m (ci , t)

If δ is constant then m (ci , t)=(1 + δ)tm(ci , 0): Exponential growth

If m (ci ) is small compared to the population size n then δ can
indeed be considered constant ⇒ Innovations that cause an
increase in �tness spread quickly in the population.

Growth is self-limiting: The relative advantage shrinks because with
more �t individuals also the average �tness increases⇒ Fit solution
tend to dominate the population (crossover and mutation being
ignored for the moment).

Analogously: Exponential decay for δ < 0.
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Fitness of Schemata

If the solutions ci , cj , ck , ... all sample the same schema H their
�tnesses de�ne the (average) �tness of H at time t

û (H, t) =
1

m (H, t)

∑
ci∈H

m (ci , t) f (ci , t)

m (H, t) is the number of instance of H in the population at time t

Note, that the sum is not taken over all possible ci ∈ H but only over those
which are actually present in the population.

How many instances of H can be expected after selection?

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)
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Selection of Fit Schemata: Example
What happens when we select and duplicate strings based of �tness?

Suppose the solutions ci ,cj ,ck sample the schema H, i.e. ci ∈ H etc.

Further suppose the average �tness in the population is f̄ = 1

f (ci , t) = 2.0, m (ci , t) = 2
f (cj , t) = 2.5, m (cj , t) = 2
f (ck , t) = 1.5, m (ck , t) = 2

Using the formula for solutions:

⇒ E (m (ci , t + 1)) = 2× 2.0
1.0 = 4

⇒ E (m (cj , t + 1)) = 2× 2.5
1.0 = 5

⇒ E (m (ck , t + 1)) = 2× 1.5
1.0 = 3

All are �tter than average, all increase in their number in the population.

For the schema H (assume sampled only byci ,cj ,ck): m (H, t) = 6,

û (H, t) = 1
6 (2× 2.0 + 2× 2.5 + 2× 1.5) = 2

û (H, t + 1) = 1
12 (4× 2.0 + 5× 2.5 + 3× 1.5) = 2, 083

Number of samples in this hyperplane is expected to increase, but...
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Disruption of Schemata

Crossover and mutation are both disruptive and constructive with
regards to schemata. consider only disruptive e�ects.

Crossover:

1 1 * * * * * *

1 * * * * * * 1

Probability of disruption by
crossover?

Mutation:

1 1 0 0 1 0 0 1 1 1 0 1 * *

1 1 * * * * 0 1 * * * * * *

Many disruptive possibilities

Only 4 disruptive possibilities
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Schema Jargon

Number of de�ned bits is the order o (H) of the schema H

1 0 * * 1 1 0 * order 5

* 0 * * 1 1 * * order 3

De�ning length is the distance d (H) between the �rst and the
last bit of the schema (i.e. number of potential cuts)

1 0 * * 1 1 0 * de�ning length 6

* 0 * * 1 1 * * de�ning length 4

i.e. bit position of last 0/1 minus bit position of �rst 0/1
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Disruptive E�ects of Crossover

1-point crossover with probability pc

d (H) is the de�ning length of H
H =* * 1 0 * 1 * * ⇒ d (H) = 3

In a single crossover there are L− 1 crossover points:
1 0 1 0 0 1 0 0 7 crossover points

Of these, d (H) points will disrupt the schema

Pr (disruption) = pc
d (H)

L− 1

Higher chance of survival if d (H) is low

Example: Suppose pc = 0.8, d (H) = 3, L = 100 ⇒

Pr (disruption) = 0.8× 3
100 = 0.024
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Disruptive E�ects of Mutation

Single-point mutation with probability pm (applied to each bit
in turn)

o (H) is the order of H
H = * * 1 0 * 1 * * ⇒ o (H) = 3
H = 1 1 1 0 * 1 * 1 ⇒ o (H) = 6

Probability that a bit survives is 1− pm

Flipping a de�ned bit always disrupts a schema, so the
probability that the schema survives is

Pr (survival) = (1− pm)o(H)

Best chances for surviving crossover and mutation when d (H)
and o (H) are both low
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Towards the Schema Theorem

First Component of the Schema Theorem

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)

The other parts of the Schema Theorem

Pr (surviving crossover) = 1− pc
d (H)

L− 1

Pr (surviving mutation) = (1− pm)o(H)

E (m (H, t + 1)) =
û (H, t)

f̄ (t)
m (H, t)

(
1− pc

d (H)

L− 1

)
(1− pm)o(H) ???
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The Schema Theorem

Schemata are not only being destroyed, but can also be created
though crossover and mutation. So we should write an inequality

Goal:

E (m (H, t + 1)) ≥ û(H,t)

f̄ (t)
m (H, t)

(
1− Pc

d(H)
L−1

)
(1− pm)o(H)

Highest
when

û (H, t) is large: �t

d (H) is small: short

o (H) is small: small number of de�ned bits

The Schema Theorem in words:

Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic algorithm.
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Consequences of the Schema Theorem

How do schemata arise? Constructive role of mutation and
crossover

Which genes belong to a good schema?
The algorithm does not easily distinguish important genes
from �hitchhikers�

How well does the expectation describe the population?

Gradual reduction of relative �tness advantage:
Other ways to change the �tness?
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The Building Block Hypothesis

During crossover, these �building blocks� become exchanged and
combined

So the Schema Theorem identi�es the building blocks of a good
solution although it only addresses the disruptive e�ects of
crossover (and the constructive e�ects of crossover are supposed to
be a large part of why GA work).
How do we address the constructive e�ects?

Building block hypothesis: A genetic algorithm seeks optimal
performance through the juxtaposition of short, low-order, high-
performance schemata, called the building blocks.

Crossover combines short, low-order schemata into increasingly �t
candidate solutions

short low-order, high-�tness schemata
�stepping stone� solutions which combine Hi and Hj to create
even higher �tness schemata
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The Building Block Hypothesis
Arguments against the validity of the BBH

Collateral convergence: Once the population begins to
converge, even slightly, it is no longer possible to estimate the
static average �tness of schemata using the information
present in the current population.

Fitness variance within schemata: In populations of realistic
size, the observed �tness of a schema may be arbitrarily far
from the static average �tness, even in the initial population.

Compositionality: Superposition of �t schemata does not
guarantee larger schemata that are more �t and these are less
likely to survive.

Adapted from John J. Grefenstette. Deception Considered Harmful. 1992
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Encoding and Local Optima

Binary encoding of a 1-D
variable

Fitness of a schema is the
average over the
corresponding hyperplane
(or rather the sample
across the population)

Sampling of the
hyperplanes is essentially
una�ected by local optima

From: Whitley, 1992

NAT04 30/09/2011 J. M. Herrmann



The Building Block Hypothesis
Experimental Evidence

The Building Block Hypothesis is a hypothesis � so we can do an experiment to test it.

Experiment: Use a problem which contains explicit building blocks
and observe the population. Do the building blocks combine to give
a good solution in the way the BBH predicts?

Mitchel, Forrest, Holland set up such a problem, using royal Road
functions. Details: Mitchel, Chapter 4, pp 127-133.

De�ne �tness in terms of particular schemata:
Substrings that, if present in a population ought to be combinable
into the optimal solution.
They should lay out a �Royal Road� to the global optimum.

The �rst RR function R1 is de�ned using a list of schemata si .
Each si has a �tness coe�cient ciThe �tness R1 (x) of some bit

string x is given by: R1 (x) =
∑

i ciδi , δi (x) =

{
1 if x ⊂ si

0 otherwise
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Royal Road Functions

Simple example using 16 bits. Suppose:

s1 = 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

s2 = ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

s3 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1 ∗ ∗ ∗ ∗

s4 = ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1 1 1

and suppose c1 = c2 = c3 = c4 = 4 and

Sopt = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Then R1

(
Sopt

)
=
∑4

i=1 ciδi

(
Sopt

)
= 16

Take the string 1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1. It samples matches s1
and s4. So δ1 (x) = δ4 (x) = 1 and δ2 (x) = δ3 (x) = 0.

And R1 (1 1 1 1 0 1 0 0 1 0 0 1 1 1 1 1) = 8
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Royal Road Functions

Several Royal Road functions de�ned in terms of di�erent
combinations of schemata with building blocks at di�erent levels,
e.g. 4 contiguous 1s, 8 contiguous 1s, 18 contiguous 1s, etc.

Try to evolve the string with all 1s and compare performance of GA
against a number of hill-climbing schemes

Steepest-ascent hill climbing (SAHC)

Next-ascent hill climbing (NAHC)

Random mutation hill climbing (RMHC)

Will the GA do better?
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Outlook

More implications of the schema theorem

More examples

Variants and hybrid algorithms

Genetic programming

Continuous evolutionary algorithms
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GA: Experimental Evidence for Parameter Variation

40000 generations
1988-2009: 21 years

Initial population: 12
strains of Escherichia
Coli

Constant conditions:
restricted glucose supply

First half (20000 generations): 45 mutations, often related to
life span and e�ciency

Second half (20000 generations): 653 mutations in some
strains but without any obvious e�ects on �tness

Conclusions: Relations between mutation rate and �tness are
more complex than expected

J. Barrick et al. (2009) Genome evolution and adaptation in a long term experiment
with Escherichia coli. Nature 08480.

NAT04 30/09/2011 J. M. Herrmann


