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Reminder: The Canonical Genetic Algorithm

Old population
Roulette-wheel selection

Intermediate population

© 00O

Single point recombination with
rate p. (per pair of individuals) one generation

Mutation with rate p,, (per
position in all strings)

o

© New population (repeat until
termination)

@ A population is a (multi-) set of individuals

@ An individual (genotype, chromosome) is encoded by a string
S ¢ AL (A: alphabet; canonical: A = {0, 1}, L fixed)

o Normalised fitness represents the objective of the problem
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Search Spaces as Hypercubes

Binary encoding: solution ¢ € {0,1}

= Each Solution is a corner of the hypercube.

eg. ¢=(0,1,0) for L=3
Sets of solutions:

(0, %,0) denotes a line
(*,1,%) denotes a plane
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From a tutorial by Erik D. Goldman GECCO09

c=(0110) for L=4

(1, %, *, %) denotes a subcube.
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Schemata (J. Holland, 1975)

@ A schema is a string that contains wildcards (“*"), but not
only asterisks, i.e. schema H € {0, 1, *}L \ {*}L

@ A schema defines a set of solutions (which coincide at the
no-wildcard symbols)

@ All (inheritable) features of the phenotype are encoded by
schemata

@ The order of the schema is the number of bits that are actually
there, e.g. **01***1 is a schema of order 3 (and length 8)

o There are 3L — 1 different schemata (not counting the schema
of order 0: ** ... *)

@ Each solution is part of 2L hyperplanes (or 28 — 1 schemata)

@ Implicit parallelism: Each individual samples many hyperplanes
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How do GAs work?

The schema theorem (J. Holland, 1975)

@ How does selection improve fitness?

o What is the fate of the schemata in face of selection, mutation
and and crossover?

Goal:

E(m(H,t+1)) = %0 m(H, 1) (1 - Pcd(H)) (1 — pm)°™

—

e His a schema
@ There are m individuals carrying this schema
@ t counts generations

o E is the mathematical expectation
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The Schema Theorem
(before starting the proof)
Consider first an individual solution ¢; € AL:

f (ci, t): fitness of solution ¢; in generation t

m(cj, t): number of copies of ¢; in the population in generation ¢

f (t): average fitness of the population in generation t

E(m(ci,t+1)) =48 m (g t)

E () is the expected value F=1sr f(a)

% (C(’t’)) the probability of selecting ¢; n: populatlon size

So above-average-fitness strings get more copies in the next
generation and below average fitness strings get fewer.
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The Schema Theorem
Growth of fit subpopulations
Suppose ¢; has above-average fitness of (1 + ) f (i.e. § > 0). Then
6)F
E(m(ci,t+1)) = Lm (g, t) = B m (¢ 1) = (1+ 8)m (ci, t)

If § is constant then m (¢, t)=(1+ 6)"m(c;,0): Exponential growth

If m(c;) is small compared to the population size n then § can
indeed be considered constant = Innovations that cause an
increase in fitness spread quickly in the population.

Growth is self-limiting: The relative advantage shrinks because with
more fit individuals also the average fitness increases=- Fit solution
tend to dominate the population (crossover and mutation being
ignored for the moment).

Analogously: Exponential decay for § < 0.
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Fitness of Schemata

If the solutions ¢j, ¢j, ¢, ... all sample the same schema H their
fitnesses define the (average) fitness of H at time t

1

i(H, 1) = m(H,t)

> mcit)f (cit)
ceH
m(H, t) is the number of instance of H in the population at time ¢

Note, that the sum is not taken over all possible ¢; € H but only over those
which are actually present in the population.

How many instances of H can be expected after selection?

E(m(H,t—l—l))a;’Z;)ﬂm(Hvt)
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Selection of Fit Schemata: Example
What happens when we select and duplicate strings based of fitness?

Suppose the solutions c;,cj,cx sample the schema H, i.e. ¢; € H etc.

Further suppose the average fitness in the population is f = 1
Using the formula for solutions:
f(ci,t) =20, m(c,t)=2 = E(m(c,-,t—i—l))_2><i§ 4
f(c,t) =25 m(c,t)=2 = E(m(cj-,t%—l))—2><—05 5
f(ck,t) =15 m(ck,t)=2 = E(m(ck,t+1))—2>< =3

All are fitter than average, all increase in their number in the populatlon.

For the schema H (assume sampled only byc;,¢j,ck): m(H,t) =6,
o(H,t)= %(2><20+2><25+2><15) 2
B(H,t+1)=2%(4x20+5x25+3x 1.5)=2,083

Number of samples in this hyperplane is expected to increase, but...
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Disruption of Schemata

Crossover and mutation are both disruptive and constructive with
regards to schemata. consider only disruptive effects.

Crossover:

11 ***x*% Probability of disruption by
1K ** k¥ k] crossover?

Mutation:

110010011101 ** Many disruptive possibilities
T1*¥**x*xQ1****xx*xx Only 4 disruptive possibilities
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Schema Jargon

Number of defined bits is the order o (H) of the schema H
10**110* order 5
kQ**11*x* order 3

Defining length is the distance d (H) between the first and the
last bit of the schema (i.e. number of potential cuts)

10**110% defining length 6
KQ**11x* defining length 4

i.e. bit position of last 0/1 minus bit position of first 0/1
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Disruptive Effects of Crossover

@ l-point crossover with probability p.

@ d (H) is the defining length of H
H=**10*1**= d(H)=3

@ In a single crossover there are L — 1 crossover points:
10100100 7 crossover points

e Of these, d (H) points will disrupt the schema

: : d(H)
Pr(d tion) = pc———
r (disruption) Pe
@ Higher chance of survival if d (H) is low
Example: Suppose p. = 0.8, d (H) =3, L =100 =
Pr(disruption) = 0.8 x 135 = 0.024
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Disruptive Effects of Mutation

@ Single-point mutation with probability p,, (applied to each bit
in turn)

o (H) is the order of H
H=**10*1**= o(H)=3
H=1110*1*1= o(H)=6

@ Probability that a bit survives is 1 — pm

@ Flipping a defined bit always disrupts a schema, so the
probability that the schema survives is

Pr (survival) = (1 — pp)°*")

@ Best chances for surviving crossover and mutation when d (H)
and o (H) are both low
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Towards the Schema Theorem

First Component of the Schema Theorem

E(m(H,t+1)) = f’ﬁ”;)t)m(H, )

\H
—~~

The other parts of the Schema Theorem

d (H)

Pr (surviving crossover) =1 — PeT 1

Pr (surviving mutation) = (1 — pp)°")

E(m(H,t+1)) = m(H,t) <1 - pCCLl(_H1)> (1= pm)°H 222
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The Schema Theorem

Schemata are not only being destroyed, but can also be created
though crossover and mutation. So we should write an inequality

Goal:
o(H,t) d(H) o(H)
E(m(H.t+1)) = %m(H,¢) (1~ P4 (1 - pm)
- e i(H,t)is large: fit
Highest e d(H) is small: short
when ,
@ o(H) is small: small number of defined bits

The Schema Theorem in words:
Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic algorithm.
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Consequences of the Schema Theorem

@ How do schemata arise? Constructive role of mutation and
crossover

@ Which genes belong to a good schema?
The algorithm does not easily distinguish important genes
from “hitchhikers”

@ How well does the expectation describe the population?

e Gradual reduction of relative fitness advantage:
Other ways to change the fitness?
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The Building Block Hypothesis

During crossover, these “building blocks” become exchanged and
combined

So the Schema Theorem identifies the building blocks of a good
solution although it only addresses the disruptive effects of
crossover (and the constructive effects of crossover are supposed to
be a large part of why GA work).

How do we address the constructive effects?

Building block hypothesis: A genetic algorithm seeks optimal
performance through the juxtaposition of short, low-order, high-
performance schemata, called the building blocks.

Crossover combines short, low-order schemata into increasingly fit
candidate solutions

@ short low-order, high-fitness schemata
@ “stepping stone” solutions which combine H; and H; to create
even higher fitness schemata
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The Building Block Hypothesis
Arguments against the validity of the BBH

o Collateral convergence: Once the population begins to
converge, even slightly, it is no longer possible to estimate the
static average fitness of schemata using the information
present in the current population.

o Fitness variance within schemata: In populations of realistic
size, the observed fitness of a schema may be arbitrarily far
from the static average fitness, even in the initial population.

e Compositionality: Superposition of fit schemata does not

guarantee larger schemata that are more fit and these are less
likely to survive.

Adapted from John J. Grefenstette. Deception Considered Harmful. 1992
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Encoding and Local Optima

@ Binary encoding of a 1-D
variable

@ Fitness of a schema is the
average over the
corresponding hyperplane
(or rather the sample
across the population)

@ Sampling of the
hyperplanes is essentially
unaffected by local optima

From: Whitley, 1992
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The Building Block Hypothesis
Experimental Evidence

The Building Block Hypothesis is a hypothesis — so we can do an experiment to test it.

Experiment: Use a problem which contains explicit building blocks
and observe the population. Do the building blocks combine to give
a good solution in the way the BBH predicts?

Mitchel, Forrest, Holland set up such a problem, using royal Road
functions. Details: Mitchel, Chapter 4, pp 127-133.

Define fitness in terms of particular schemata:

Substrings that, if present in a population ought to be combinable
into the optimal solution.

They should lay out a “Royal Road” to the global optimum.

The first RR function Ry is defined using a list of schemata s;.

Each s; has a fitness coefficient ¢;The fitness R; (x) of some bit
1 if ;

string x is given by: Ry (x) =)>_;¢idi, 6i(x) = e s
0 otherwise
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Royal Road Functions

Simple example using 16 bits. Suppose:
S1 = L 111 s s sk sk sk ok % % ok %
Sp = kk ok ok L1 11 sk % sk sk sk % 5k %
S3 =k kkkkokk ok LLL 1 k%
S =kxkxkkxkxkkx1111
and suppose ¢; = ¢ = ¢c3 = ¢4 = 4 and

Sopt =1111111111111111

Then Ry (sopt) =3 G (sopt) — 16

Take the string 1111010010011111. It samples matches s;
and S54. So (51 (X) = (54 (X) =1 and (52 (X) = 53 (X) =0.

And R;(1111010010011111)=38
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Royal Road Functions

Several Royal Road functions defined in terms of different
combinations of schemata with building blocks at different levels,
e.g. 4 contiguous 1s, 8 contiguous 1s, 18 contiguous 1s, etc.

Try to evolve the string with all 1s and compare performance of GA
against a number of hill-climbing schemes

@ Steepest-ascent hill climbing (SAHC)
@ Next-ascent hill climbing (NAHC)
e Random mutation hill climbing (RMHC)

Will the GA do better?
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More implications of the schema theorem
More examples
Variants and hybrid algorithms

Genetic programming

Continuous evolutionary algorithms

NATO04 30/09/2011 J. M. Herrmann



GA: Experimental Evidence for Parameter Variation

50 T

@ 40000 generations s ek
1988-2009: 21 years )

@ Initial population: 12
strains of Escherichia

Mutations

Col : =

. - 200 A y

o Constant conditions: I"HI; 03" T0K 20K 59K 40K .

- 1} 2500 5000 7,500 10,000 12,500 15,000 17,500 Zﬂ,ﬂ'Jl‘Ju
restricted glucose supply .

@ First half (20000 generations): 45 mutations, often related to
life span and efficiency

@ Second half (20000 generations): 653 mutations in some
strains but without any obvious effects on fitness

o Conclusions: Relations between mutation rate and fitness are
more complex than expected

J. Barrick et al. (2009) Genome evolution and adaptation in a long term experiment
with Escherichia coli. Nature 08480.
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