
Natural Computing

Lecture 3

Michael Herrmann
mherrman@inf.ed.ac.uk
phone: 0131 6 517177
Informatics Forum 1.42

27/09/2011

The Canonical Genetic Algorithm

The Canonical Genetic Algorithm: Conventions

1 Old population

2 Selection

3 Intermediate population

4 Recombination

5 Mutation

1 New population

one generation

A population is a (multi-) set of individuals

An individual (genotype, chromosome) is a string S ∈ AL (A:
alphabet, often: A = {0, 1})
Fitness = objective function = evaluation function. Fitness
values can be replaced by ranks (high to low)

NAT03 27/09/2011 J. M. Herrmann

Roulette Wheel Selection
I. Plain variant

Mean �tness f̄ = 1
n
Si fi =⇒ Normalized �tness: fi

f̄

(from now on short: �tness)

Each time the ball spins one
individual is selected for the
intermediate population

Stochastic sampling with
replacement

Ratio of �tness to average
�tness determines number of
o�spring, i.e. a new individual is
a copy of an old individual (of
�tness fi) with probability fi

nf̄

If fi = f̄ then the individual
�survives� with probability
1−

(
1− 1

n

)n
Sector (French) bets in roulette: Here,
the size of the sector represents the
relative �tness of an individual

NAT03 27/09/2011 J. M. Herrmann

Roulette Wheel Selection
II. A more practical variant

Mean �tness f̄ = 1
n
Si fi =⇒ Normalized �tness: fi

f̄

Remainder stochastic sampling

Ratio of �tness to average
�tness determines number of
o�spring

If fi = f̄ : the individual survives

If fi < f̄ : survives with prob. fi

f̄

If fi > f̄ : number of o�spring

int
(
fi

f̄

)
and possibly one more

with probability fi

f̄
− int

(
fi

f̄

) Now: Only the outer wheel with
equidistant pointers spins once and
pointers in each sector are counted

Both variants are equivalent in the sense that they produce an un-
biased sample of the �tness in the population, i.e. a new individual
is a copy of an old individual (of �tness fi) with probability fi

nf̄

NAT03 27/09/2011 J. M. Herrmann

From intermediate to new population

Preparation:

Population was already shu�ed by selection
(but may contain multiple copies of the same string)

Individuals are strings of equal length L

Choose a probability pc :

Crossover:

Choose a pair of individuals

With probability pc :

choose a position from 1 to L− 1
cut both individuals after this position
re-attach crossed: xyxxxyyy, abbabbab � xyxxbbab, abbaxyyy

Move the obtained pair to the new population (even if not
crossed over)

Repeat for the remaining pairs (assert n even)

NAT03 27/09/2011 J. M. Herrmann

From intermediate to new population

Preparation:

Crossover �nished

Individuals are strings of length L made from k di�erent char's

Choose a (small) probability pm (possibly rank-dependent)

Mutation:

For all individuals (from new population)

for each position from 1 to L

with probability pm:
set the character (bit if binary) to a random value or change it
[this gives k

k−1 (i.e. twice if binary) the e�ect! Canonical:
binary, switch]

The obtained mutants (possibly including some unmutated
individuals) form the new population

NAT03 27/09/2011 J. M. Herrmann

The canonical GA in brief

Repeat

Evaluate �tness

Select intermediate population

Do crossover or reproduction

Do mutation

Until solutions are good enough

NAT03 27/09/2011 J. M. Herrmann

The canonical GA

Evaluation function F (raw �tness) gives a score F (i) = fi to
each individual solution i ∈ {1, . . . , n}
If f̄ is the average evaluation over the whole population of n
individuals then the �tness of i is fi/f̄

Probability of selection of a solution with evaluation fi is
fi/
∑

i
fi

Select two parents at random from the intermediate
population. Apply crossover with probability pc , with
probability 1− pc copy the parents unchanged into the next
generation � reproduction.
Crossover: from the 2 parents create 2 children using 1-point
crossover. Select crossover point uniform-randomly

Mutation: Take each bit in turn and �ip it with probability
pm(1→ 0 or 0→ 1). pm < 0.01 usually. Note that the
probability pm is applied di�erently from pc
This is one generation. Repeat for many generations until a
termination criterion is met.

NAT03 27/09/2011 J. M. Herrmann

Termination of a GA

The generational process is repeated until a termination condition
has been reached, e.g.

A solution is found that has optimal �tness (or is su�ciently
close to the optimum)

Fitness indicates a su�cient improvement over alternative
algorithms

Fixed number of generations reached (only for safety!)

Allocated budget (computation time/money) reached

The diversity of the population has vanished (restart?)

The �tness of the highest ranking solution is reaching or has
reached a plateau such that successive iterations no longer
produce better results (restart?)

Combinations of the above

After Termination decide: Really �nish or restart a variant of the
GA on the same task

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�

Maximise f (x) = x2 for integer x ∈ {0, ..., 31}. (What is the answer?)

Encoding:
Write x in base 2 (here: more
signi�cant bits to the left).

Initialisation:
All strings = (0, 0, 0, 0, 0)
(or random)

Mutations:
Generate 1s

Cross-over:
Combine 1s from di�erent
individuals

Termination criterion

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�

Represent x as 5 bits
00000 0 0

00001 1 1

00010 2 4
...

...
...

11111 31 961

Here raw �tness values will be
used instead of ranks. Does
this make any di�erence?

Use a population size of 4 (far too small!)

i genome raw �tness % of total

1 01101 169 14.4

2 11000 576 49.2

3 01000 64 5.5

4 10011 361 30.9

Roulette-wheel selection

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�
Further Recombinations

So our new (intermediate) population might be: 1, 2, 2, 4

Create next generation:

Crossover: pc = 1.0 ⇒ crossover is always applied here

Parents: 1 and 2

0110 1
1100 0

=⇒ 0110 0
1100 1

Parents: 2 and 4

11 000
10 011

=⇒ 11 011
10 000

Mutation:
pm = 0.001, 20 bits ⇒ no mutation here (20× 0.001 = 0.02)
(... wouldn't be a good idea if all individuals had a 0 in the same place!)

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�

Results for the second generation:

i genome raw �tness % of total

1 01100 144 8.2

2 11001 625 35.6

3 11011 729 41.6

4 10000 256 14.6

What is the average evaluation of this population?

How does it compare with the average evaluation of the previous
generation?

Continue until no improvement in the best solution for k
generations [or run for a �xed number of generations (?)]

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�

So our new (intermediate) population might be: 1, 2, 2, 4

Create next generation:

Crossover: pc = 1.0 ⇒ crossover is always applied here

Pair parents randomly, choose crossover points randomly

Parents: 1 and 2
0110 1
1100 0

=⇒
2. Generation
01 100
11 001

=⇒
3. Generation
01 001
11 100

Parents: 2 and 4
11 000
10 011

=⇒
2. Generation
11 011
10 000

=⇒
3. Generation
110 00
100 11

... assuming that by chance the same pairings have taken place.
Now there is a chance to �nd the optimal solution.

What chance? Choose (what is now) parents 2 and 4: probability
1/3; cut after third place probability 1/4, i.e. a chance of 1/12.

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones�
Conclusions

Larger populations may improve exploration

Large populations, may contain many identical individuals

redundant representation
if they are �t some of them will survive

Choice of the representation is crucial: E.g. 10000 is better
(higher �tness!) than 01111 although the latter is �closer� (in
Hamming distance but not w.r.t. �tness!).

Low evolutionary pressure can be helpful: The algorithm will
typically �nd signi�cant bits �rst, (e.g.) 11100 has much
higher �tness than 00011, but together they could form the
optimal solution if some of the latter individuals did survive

Mutations are important!

Termination is a non-trivial problem

NAT03 27/09/2011 J. M. Herrmann

GA: How does it work?

Climbing up the �tness curve
(landscape)

Promote fast climbers

Putting together building blocks
of good subsolutions

What would happen if we choose a linear �tness function?

What would happen if �tness just counts the bits?

NAT03 27/09/2011 J. M. Herrmann

Simple Example: �All-Ones� (bit-wise)

Number of generations required to discover the optimal solution
Strings of 20 characters Si ∈ 0, 120, n = 100, f (S) = SSi ,
initialization: a) Si = 0 and Si = 1 with prob. 1

2 each
or b) Si = (0, . . . , 0)

NAT03 27/09/2011 J. M. Herrmann

A �deceptive� �tness function

f (x) =


961 for x = 0

x2 for 0 < x < 31

0 for x = 31

NAT03 27/09/2011 J. M. Herrmann

The �Philosophy� of GA

Encoding: Create a space of solutions

Fitness function: Discriminate good from bad solutions

Initialization: Start with good candidate solutions

Selection: Prefer better solutions to worse ones

Recombination: Combine parental traits in a novel manner

Mutation: Creating individual traits by random local search

Termination: Comparing achieved and achievable �tness

How do the simple mechanisms create something useful when
combined?

Selection + Mutation = Continual improvement

Selection + Recombination = Innovation

NAT03 27/09/2011 J. M. Herrmann

Example: Function Optimization
Minimise Rastrigin's Function

f (x) = 10 + x2 − 10 cos (2πx) , −5.12 ≤ x ≤ 5.12

Representation: binary strings
x = xmin +

(
xmax − xmin

)
b/ (2m − 1)

So for 8-bit strings
x = −5.12 + 10.24 b/

(
28 − 1

)
E.g. if b = 10011001 (represents 153 in
base 10)
x = −5.12 + 10.24 × 153/255 = 1.024

Optimally, the algorithm �nds (for this setting) x = 0.0201 with
f (x) = 0.0799 rather than x = 0 and f (x) = 0. Why?

More on this example: Search for �Rastrigin� at www.mathworks.com,
www.obitko.com/tutorials/genetic-algorithms/example-function-minimum.php

NAT03 27/09/2011 J. M. Herrmann

Outlook

The schema theorem

What is a schema? A non-empty subset of a string (in other
words: a string with some wildcards)
Short, low-order, above-average schemata receive exponentially
increasing trials in subsequent generation of a genetic
algorithm.

Variants of GA

Performance analysis: More examples

General formulation, theory, convergence etc.

Other algorithms

NAT03 27/09/2011 J. M. Herrmann

