Natural Computing

Lecture 2: Genetic Algorithms

inf

J. Michael Herrmann

michael.herrman@ed.ac.uk INFR
ohone: 0131 6 517177 09038

Informatics Forum 1.42 23/9/2011

School of
ormatics

Meta-heuristic algorithms

* Similar to stochastic optimization

* lteratively trying to improve a possibly large set
of candidate solutions

* Few or no assumptions about the problem
(need to know what is a good solution)

* Usually finds good rather than optimal solutions

* Adaptable by a number of adjustable
parameters

http://en.wikipedia.org/wiki/Metaheuristic

1. Chapter

Genetic algorithms

An early example of an evolutionary algorithm

Start

Experimental contour
optimization of a supersonic
flashing flow nozzle

(1967-1969)

Hans-Paul Schwefel

More recent work: “List of genetic
algorithm applications” at wikipedia.org

Paralipomena

Theory of natural evolution

Genetics, genomics, bioinformatics

The Philosophy of Chance (Stanislaw Lem, 7968)
Memetics (R. Dawkins: The Selfish Gene, 1976)

Neural Darwinism -- The Theory of Neuronal Group
Selection (Gerald Edelman, 1975, 1989)

(artificial) Immune systems
Evolution of individual learning abilities, local heuristics

Computational finance, markets, agents

Genetic Algorithms

¢ global search heuristics
¢ technique used in computing
¢ find exact or approximate solutions to optimization
problems

Applications in

e Bioinformatics

Phylogenetics e
Computational science |
Engineering
Robotics
Economics
Chemistry
Manufacturing
Mathematics
Physics

® ® ® ® ® ® ® ® ®

The Golem Project

Hod Lipson &
Jordan B. Pollack (2000)

Recent scientific activity in MHA

888888

333333

333333

333333

1995 2688

“Genetic algorithms”

888888

1995 2888 2885

“Particle swarms”

Source: Google scholar

A Simple Example

Optimal assignment problem (OAP)

Consider the Tutor Allocation Problem

Jobs: Job,, Job,,..., Job

m

Job; is a single tutorial to be taught:

— subject, e.g. Java, VR
— slot, e.g. Wednesday 4:10 - 5pm

— place, e.g. 4.07 Appleton Tower

— knowledge, skills required, e.g. strong at Java,
some knowledge of Al techniques useful

A Simple Example

One tutor teaches Properties of tutors:

each tutorial. — knowledge/skills

We have a pool of — cost per hour

tutors to choose from: — time preferences
Tutors: — room preferences
Tutor A, Tutor B, Tutor C, ... — optimal number of jobs

Solutions

A solution is an allocation of tutors to jobs:

Each job-tutor pairing can be given a score, based
on how good the knowledge/skills match is:

Tutor A: some C++, strong at Al
Job 1: strong Java, some Al useful

— a reasonable match, though not perfect

A function f,(job, tutor) calculates a numerical score
for us for any pairing.

The whole solution can be given a score, based on:

— scores for job-tutor pairings
— total cost of solution
— hard constraints

— tutor preferences

The total score will be calculated from the scores for
the individual parts.

The problem is to find the solution with the best
score.

Possible Methods

Use exhaustive search?

— 5 tutors, 10 jobs = 9.8+10° solutions
— 10 tutors, 20 jobs = 1.0*10%" solutions

— 15 tutors, 30 jobs = 1.92+*103° solutions

Possible Methods

Use greedy search?

Job 1 — find best tutor

Job 2 — find best tutor to give best combined score
with the choice for Job 1

Job 3 — etc.

Almost certain to be sub-optimal since it commits to
choices too early.

Possible Methods

Use Hillclimbing Local Search?
1 2 3 4 5 6 7

Solution;: A B E A B B |D

d 9 10

C ED

Suppose | D |is the worst scorer. Try A, B, C, E

1 2 3 4 5 6 7

Solution;,;: A B E A B B |A

Continue until no improvement possible.

Prone to local maxima.

8 9 10

C ED

Job

Tutor

Job

Tutor

Genetic Algorithms

How about trying a biologically inspired solution
based on genetics?

1. Generate a population of solutions:
Generation;:

Solution1: A
B

B C A B C DDE E
Solution2: C E A B DUET CAD
Solutionn: E D A C CDADUBA
2. Give each solution a score, called a fitness.

3. Create a new generation of solutions by:

(a) selecting fit solutions
(b) breeding new solutions from old ones and add to

generation; 1.

4. When a sufficiently good solution has been found, stop.

A Simple Genetic Algorithm

* Selection (out of n solutions, greedy type):
- Calculate 2, f,(Job,, Tutor) for each solution S

- Rank solutions
- Choose the k best scorers (1 < k<n)

* Breeding (Mixing good solutions):

- take a few of the good solutions as parents

- cut in halves, cross, and re-glue (see next slide)
* Mutation:

- generate copies of the mixed solutions with very few
modifications

- e.qg. for k=n/2:. two “children” for each of them

Recombination and Mutation

How does breeding work?

1. Reproduction:
Copy solution; unchanged into the next generation.

2. Crossover:

Parentl: ABCABC DDEE ABCg(EBA
Parent2: BAEDCA DCBA BAEDCADDEE

Exchange of genetic material to form children.

3. Mutation:

(a) change one value in a solution to a random new
value:

AEBCABDDCE mmm) AEBCABDCCE

1

(b) swap two values:

=
AEBCABDDCE W) AEBDABDCCE

—_—
(c) lots of others!

Mutation is usually done after reproduction /crossover,
with low probability (1%).

How Well Does This Work?

small problems: optimal solutions

larger problems: optimal or near optimal given
enough time

anytime behaviour

runs on parallel machines

adding constraints is very easy

used in a multitude of real applications

wide applicability to problems in search,
optimisation, machine learning, automatic
programming, A-life, . ..

The Main Issues

e How do | represent a solution?

e How should | rate a solution for fitness?

e How large should the population of solutions be?
e How much selection pressure should | apply?

e What form of crossover should | use?

e what form of mutation should | use?

Next lecture: The Canonical GA

DNA figure: Access Excellence Graphics Library.
Genotype—phenotype figure: Blamire's Science at a Distance.

Towards a Canonical GA

* Numerous variants of GAs in applications

* The canonical GA highlights the principles why GAs
work

* Darrell Whitley (1989) The GENetic ImplemeTOR

* A heuristic fitness function is often not a good
measure of any “exact fitness”: Ranking introduces a
uniform scaling across the population (evaluation)

* Direct control of selective pressure (improvement)

* Efficient coverage of the search space (diversity)

see: D. Whitley: A genetic algorithm tutorial. Statistics and Computing (1994) 4, 65-85

Conventions

old population
selection

one generation
recombination mutation

new population

An individual is a string (genotype, chromosome)
Fitness values are replaced by ranks (high to low)
Fitness = objective function = evaluation function

Paralipomena

Theory of natural evolution

Genetics, genomics, bioinformatics

The Philosophy of Chance (Stanislaw Lem, 7968)
Memetics (R. Dawkins: The Selfish Gene, 1976)

Neural Darwinism -- The Theory of Neuronal Group
Selection (Gerald Edelman, 1975, 1989)

(artificial) Immune systems
Evolution of individual learning abilities, local heuristics

Computational finance, markets, agents

Genetic Programming (GP)

Evolutionary algorithm-based

methodology inspired by biological

evolution

Finds computer programs that

perform a user-defined task @ @ o3
Similar to genetic algorithms (GA)

where each individual is a computer
program

Optimize a population of computer
programs according to a fitness
landscape determined by a program's
ability to perform a given
computational task.

(11) ? cas{Y

Evolutionary Computation (EC)

Genetic algorithms: Solution of a problem in the form of
strings of numbers using recombination and mutation

Genetic programming: Evolution of computer programs

Evolutionary programming: Like GP, but only the
parameters evolve

Evolution strategies: Vectors of real numbers as
representations of solutions

Evolutionary Computation
Artificial iImmune systems
Neural computation
Amorphous computing
Ant colony optimization
Swarm intelligence
Harmony search
Cellular automata
Artificial life I (N
Membrane computing 3" = 3
Molecular computing g g
Quantum computing

e
~ www.frams.alife.pl

Course organization

Tuesday & Friday 15:00 — 15:50 at BS LT1
Assignments: two assignment together worth 30%
(10% + 20%) of the course mark, to be handed ir
on 27 Oct / 24 Nov (both Thursdays 4pm)

Exam: worth 70% of the course mark, taken at the end of
Semester 2. Visiting students can take the exam at the end of

michael.herrmann@ed.ac.uk Semester 1.
phone: 0131 6 517177
Informatics Forum 1.42

Literature for this part:

Melanie Mitchell: An Introduction to Genetic Algorithms.

MIT Press, 1996.
Xin-She Yang: Nature-Inspired Metaheuristic
Algorithms. Luniver Press 2010

Simulation: math.hws.edu/eck/jsdemo/jsGeneticAlgorithm.html

	Folie 1
	Slide 3
	Slide 4
	Folie 17
	Slide 6
	Genetic Algorithms
	The Golem Project Hod Lipson & Jordan B. Pollack (2000)‏
	Slide 9
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	A Simple Genetic Algorithm
	Recombination and Mutation
	Folie 16
	Slide 21
	Folie 34
	Towards a Canonical GA
	Conventions
	Paralipomena
	Slide 26
	Slide 27
	Slide 28
	Tutorials

