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Overview of PEPA

PEPA is a formal language for performance evaluation.
A model is described as a cooperation between sequential
components.

A sequential component cycles through a set of local states.
We use the operator prefix to associate an action type and a
rate with a transition:

(α, r).P

A sequential component may enable two of more activities
simultaneously. We use the operator choice for this:

(α, r).P1 + (β, s).P2

We may use a constant for naming purposes

A def
= (α, r).P
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Example

We wish to model the following editing workflow:
Download a document
Edit
Save

We may model this through a three-state sequential
component:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1
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Compositional Modelling

A model for a file server:

Server1
def
= (download , s1).Server2

Server2
def
= (reset , s2).Server1

Consider now a server and a user together:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1

System def
= User1 ��

{download}
Server1
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The Transition System
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