
The PEPA Eclipse Plug-in

Mirco Tribastone
mtribast@inf.ed.ac.uk

http://homepages.inf.ed.ac.uk/mtribast/

4 November 2008

mtribast@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/mtribast/


Outline

Overview of PEPA
Plug-in demonstration

Download and installation
Editing a PEPA description
State space navigation
Markov chain analysis
Experimentation



Overview of PEPA

PEPA is a formal language for performance evaluation.
A model is described as a cooperation between sequential
components.

A sequential component cycles through a set of local states.
We use the operator prefix to associate an action type and a
rate with a transition:

(α, r).P

A sequential component may enable two of more activities
simultaneously. We use the operator choice for this:

(α, r).P1 + (β, s).P2

We may use a constant for naming purposes

A def
= (α, r).P



Overview of PEPA

PEPA is a formal language for performance evaluation.
A model is described as a cooperation between sequential
components.
A sequential component cycles through a set of local states.
We use the operator prefix to associate an action type and a
rate with a transition:

(α, r).P

A sequential component may enable two of more activities
simultaneously. We use the operator choice for this:

(α, r).P1 + (β, s).P2

We may use a constant for naming purposes

A def
= (α, r).P



Overview of PEPA

PEPA is a formal language for performance evaluation.
A model is described as a cooperation between sequential
components.
A sequential component cycles through a set of local states.
We use the operator prefix to associate an action type and a
rate with a transition:

(α, r).P

A sequential component may enable two of more activities
simultaneously. We use the operator choice for this:

(α, r).P1 + (β, s).P2

We may use a constant for naming purposes

A def
= (α, r).P



Overview of PEPA

PEPA is a formal language for performance evaluation.
A model is described as a cooperation between sequential
components.
A sequential component cycles through a set of local states.
We use the operator prefix to associate an action type and a
rate with a transition:

(α, r).P

A sequential component may enable two of more activities
simultaneously. We use the operator choice for this:

(α, r).P1 + (β, s).P2

We may use a constant for naming purposes

A def
= (α, r).P



Example

We wish to model the following editing workflow:
Download a document
Edit
Save

We may model this through a three-state sequential
component:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1



Example

We wish to model the following editing workflow:
Download a document
Edit
Save

We may model this through a three-state sequential
component:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1



Compositional Modelling

A model for a file server:

Server1
def
= (download , s1).Server2

Server2
def
= (reset , s2).Server1

Consider now a server and a user together:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1

System def
= User1 ��

{download}
Server1



Compositional Modelling

A model for a file server:

Server1
def
= (download , s1).Server2

Server2
def
= (reset , s2).Server1

Consider now a server and a user together:

User1
def
= (download , r1).User2

User2
def
= (edit , r2).User3

User3
def
= (save, r3).User1

System def
= User1 ��

{download}
Server1



The Transition System

User1 ��
{download}

Server1 User2 ��
{download}

Server2-
(download , min(r1, s1))

User3 ��
{download}

Server2

�
�

�	
(edit , r2)

User2 ��
{download}

Server1

@
@

@I (reset , s2)

User1 ��
{download}

Server2

�
�

�	
(save, r3)

@
@

@R
. . .

. . .

6

(reset , s2)

User3 ��
{download}

Server1

@
@

@I (edit , r2)

?

(save, r3)



Demo


