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Lecture IX– Dim. Reduction (2)

Contents:
• Subset Selection & Shrinkage

• Ridge regression, Lasso

• PCA, PCR, PLS 
• Comparison of Methods
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Data From Human Movement

Measure arm movement and full-body movement of 
humans and anthropomorphic robots
Perform local dimensionality analysis with a growing 
variational mixture of factor analyzers
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Dimensionality of Full Body Motion

About 8 dimensions in the space formed by joint positions, 
velocities, and accelerations are needed to model an inverse 

dynamics model
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The Probabilistic Way: Factor Analysis

Data Generating Model:

The parameters U and Ω can be estimated by max. likelihood, in 
particular the EM algorithm
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The EM-Algorithm for Factor Analysis
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Factor Analysis for Supervised Learning

A straightforward extension allows factor analysis to be used for 
supervised learning:

After performing EM on joint data, the network weights are:
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d:= dimensionality of observed data
c:= dimensionality of (supervised) outputs

k:= reduced dimensionality
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Partial Least Squares (PLS)

Build the matrix X and vector y Recursively compute the linear model
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Partial Least Squares is a linear regression methods that includes 
dimensionality reduction 
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Comparing Dimensionality Red. Methods

One Projection
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Comparison of Methods (I)

Least complex 
model within one 
S.D. of the best

Prostate Cancer Data Example

(pg. 57, Elem. Stat. Analysis)
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Comparison of Methods (II)

Least complex 
model within one 
S.D. of the best

Prostate Cancer Data Example

(pg. 57, Elem. Stat. Analysis)
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Generalization of Shrinkage Methods
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Error- Regularization Tradeoff

Lasso Ridge regression

Error Contours

Constraint regions
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