_ecture I X— Dim. Reduction (2)
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- Subset Selection & Shrinkage

- Ridge regression, Lasso
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- Comparison of Methods



Data From Human Movement

= Measure arm movement and full-body movement of
humans and anthropomorphic robots

= Perform local dimensionality analysis with a growing
variational mixture of factor analyzers
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Cumulative Variance
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Dimensionality of Full Body Motion
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About 8 dimensions in the space formed by joint positions,
velocities, and accelerations are needed to model an inverse
dynamics model



The Probabilistic Way: Factor Analysis

¢ Data Generating Model:
x=Uz+& where ¢ =N(0,Q) and z=N(0,1)
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¢ The parameters U and Q can be estimated by max. likelihood, in
particular the EM algorithm



The EM-Algorithm for Factor Analysis
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Factor Analysis for Supervised Learning

* A straightforward extension allows factor analysis to be used for
supervised learning:

pex
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v =X, i.e., the TRUE (non noise contaminated input
U=[1,w]

¢ After performing EM on joint data, the network weights are:
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d:= dimensionality of observed data
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c:= dimensionality of (supervised) outputs

k:=reduced dimensionality



Partial Least Squares (PLS)

¢ Partial Least Squares is a linear regression methods that includes
dimensionality reduction

Build the matrix X and vector y Recursively compute the linear model
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Comparing Dimensionality Red. Methods
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Comparison of Methods (I)
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CV Error

Comparison of Methods (1I)

Prostate Cancer Data Example

(pg. 57, Elem. Stat. Analysis)

Principal Components Regression
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Generalization of Shrinkage Methods

N M M
ws" = argmin{Z(ti —W, — Z:xijwj)2 + AZWJQ} for g =>0.
w i=1 j=I j=l

q =0 :variable subset selection
q =1: lasso
q = 2 :ridge regression

M
q :
Contours of constant value of E ‘W j‘ for given value of q.
j=1



Error- Regularization Tradeoff

Lasso Ridge regression
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