

Contents:

- Subset Selection & Shrinkage
 - Ridge regression, Lasso
- PCA, PCR, PLS
- Comparison of Methods

Data From Human Movement

- Measure arm movement and full-body movement of humans and anthropomorphic robots
- Perform local dimensionality analysis with a growing variational mixture of factor analyzers

Dimensionality of Full Body Motion

About 8 dimensions in the space formed by joint positions, velocities, and accelerations are needed to model an inverse dynamics model

The Probabilistic Way: Factor Analysis

• Data Generating Model:

$$\mathbf{x} = \mathbf{U}\mathbf{z} + \varepsilon$$
 where $\varepsilon = N(0, \Omega)$ and $\mathbf{z} = N(0, 1)$

• The parameters U and Ω can be estimated by max. likelihood, in particular the EM algorithm

The EM-Algorithm for Factor Analysis

$$\mathbf{E} - \mathbf{S} \mathbf{t} \mathbf{e} \mathbf{p} :$$

$$\beta = \mathbf{U}^{T} \left(\Omega + \mathbf{U} \mathbf{U}^{T} \right)^{-1}$$

$$E \left\{ \mathbf{z} \mid \mathbf{x} \right\} = \beta \mathbf{x}$$

$$E \left\{ \mathbf{z} \mathbf{z}^{T} \mid \mathbf{x} \right\} = \mathbf{I} - \beta \mathbf{U} + \beta \mathbf{x} \mathbf{x}^{T} \beta^{T}$$

$$\mathbf{M} - \mathbf{Step}:$$

$$\mathbf{U}^{new} = \left(\sum_{n=1}^{N} \mathbf{x}^{n} E\left(\mathbf{z} \mid \mathbf{x}^{n}\right)^{T}\right) \left(\sum_{n=1}^{N} E\left\{\mathbf{z} \mathbf{z}^{T} \mid \mathbf{x}^{n}\right\}^{T}\right)^{-1}$$

$$\Omega^{new} = \frac{1}{N} diag\left\{\sum_{n=1}^{N} \mathbf{x}^{n} \mathbf{x}^{n^{T}} - \mathbf{U}^{new} E\left(\mathbf{z} \mid \mathbf{x}^{n}\right) \mathbf{x}^{n^{T}}\right\}$$

Factor Analysis for Supervised Learning

• A straightforward extension allows factor analysis to be used for supervised learning:

$$\mathbf{z} = \begin{bmatrix} \mathbf{x} - \overline{\mathbf{x}} \\ \mathbf{y} - \overline{\mathbf{y}} \end{bmatrix}$$
$$\mathbf{v} = \widetilde{\mathbf{x}}, \text{ i.e., the TRUE (non-noise contaminated input)}$$
$$\mathbf{U} = \begin{bmatrix} \mathbf{I}, \mathbf{W} \end{bmatrix}^T$$

• After performing EM on joint data, the network weights are:

$$E\left\{\begin{bmatrix} y \\ \mathbf{v} \end{bmatrix} | \mathbf{x} \right\} = \begin{bmatrix} \mathbf{W}^T \\ \mathbf{B} \end{bmatrix} \mathbf{x} = \Psi_{21} \Psi_{11}^{-1} \mathbf{x}, \text{ where}$$
$$\Psi = \begin{bmatrix} \mathbf{\Omega} + \mathbf{U}\mathbf{U}^T & \mathbf{U} \\ \mathbf{U}^T & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \Psi_{11}(=d \times d) & \Psi_{12}(=d \times (c+k)) \\ \Psi_{21}(=(c+k) \times d) & \Psi_{22}(=(c+k) \times (c+k)) \end{bmatrix}$$
$$d:= \text{ dimensionality of observed data}$$
$$c:= \text{ dimensionality of (supervised) outputs}$$
$$k:= \text{ reduced dimensionality}$$

Partial Least Squares (PLS)

• Partial Least Squares is a linear regression methods that includes dimensionality reduction

Build the matrix X and vector y

Recursively compute the linear model

Comparing Dimensionality Red. Methods

FA

PCR

PLS

Comparison of Methods (I)

Comparison of Methods (II)

Prostate Cancer Data Example

(pg. 57, Elem. Stat. Analysis)

Lecture IX: MLSC - Dr. Sethu Vijayakumar

Generalization of Shrinkage Methods

$$\hat{w}^{gen} = \arg\min_{w} \left\{ \sum_{i=1}^{N} (t_i - w_0 - \sum_{j=1}^{M} x_{ij} w_j)^2 + \lambda \sum_{j=1}^{M} |w_j|^q \right\} \quad for \ q \ge 0.$$

$$q = 0$$
:variable subset selection
 $q = 1$: lasso
 $q = 2$:ridge regression

Error- Regularization Tradeoff

