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Lecture VIII– Dim. Reduction (I)

Contents:
• Subset Selection & Shrinkage

• Ridge regression, Lasso

• PCA, PCR, PLS 
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Data From Human Movement

Measure arm movement and full-body movement of 
humans and anthropomorphic robots
Perform local dimensionality analysis with a growing 
variational mixture of factor analyzers
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Dimensionality of Full Body Motion

About 8 dimensions in the space formed by joint positions, 
velocities, and accelerations are needed to model an inverse 

dynamics model
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Dimensionality Reduction

Goals:
fewer dimensions for subsequent processing
better numerical stability due to removal of correlations
simplify post processing due to “advanced statistical properties” of pre-
processed data
don’t lose important information, only redundant information or 
irrelevant information
perform dimensionality reduction spatially localized for nonlinear 
problems (e.g., each RBF has its own local dimensionality reduction)
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Subset Selection & Shrinkage Methods

Subset Selection
Refers to methods which selects a set of variables to be included and discards other 
dimensions based on some optimality criterion. Does regression on this reduced 
dimensional input set. Discrete method –variables are either selected or discarded

• leaps and bounds procedure (Furnival & Wilson, 1974)

• Forward/Backward stepwise selection 

Shrinkage Methods
Refers to methods which reduces/shrinks the redundant or irrelevant variables in a 
more continuous fashion. 

• Ridge Regression

• Lasso

• Derived Input Direction Methods – PCR, PLS
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Ridge Regression

Ridge regression shrinks the coefficients by imposing a penalty on their size. They 
minimize a penalized residual sum of squares : 
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Ridge regression (cont’d)

Some notes: 
• when there are many correlated variables in a regression problem, their coefficients can 
be poorly determined and exhibit high variance e.g. a wildly large positive variable can be 
canceled by a similarly largely negative coefficient on its correlated cousin.

• The bias term is not included in the penalty.

• When the inputs are orthogonal, the ridge estimates are just a scaled version of the least 
squares estimate

Matrix representation of criterion and it’s solution:
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Ridge regression (cont’d)

Ridge regression shrinks the dimension with least variance the most. 

Shrinkage Factor :
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Lasso

Lasso is also a shrinkage method like ridge regression. It minimizes a penalized 
residual sum of squares : 
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The L2 ridge penalty is replaced by the L1 lasso penalty. 
This makes the solution non-linear in t.
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Derived Input Direction Methods

These methods essentially involves transforming the input directions to some low 
dimensional representation and using these directions to perform the regression.

Example Methods

• Principal Components Regression (PCR)
• Based on input variance only

• Partial Least Squares (PLS)
• Based on input-output correlation and output variance
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Principal Component Analysis

From earlier discussions:
PCA finds the eigenvectors of the correlation (covariance) matrix of 
the the data
Here, we show how PCA can be learned by bottle-neck neural 
networks (auto-associator) and Hebbian learning frameworks
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PCA Implementation

Hebbian Learning
obtain a measure of familiarity of a new data point

the more familiar a data point, the larger the output

x1 x2 x3 xd

y

w

w n +1 = w n + αyx
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Hebbian Learning

Properties of Hebbian Learning
unstable learning rule (at most neutrally stable)
finds direction of maximal variance of the data
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Fixing the Instability (Oja’s rule)

Renormalization

Oja’s Rule

Verify Oja’s Rule (does it do the right thing ??)
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Application Examples of Oja’s Rule

TX = UDV
Singular Value Decomposition (SVD) 

Finds the direction (line) which minimizes the 
sum of the total squared distance from each 
point to its orthogonal projection onto the line.
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PCA : Batch vs Stochastic

PCA in Batch Update:
just subtract the mean from the data
calculate eigenvectors to obtain principle components (Matlab function “eig”)

PCA in Stochastic Update:
stochastically estimate the mean and subtract it from input data
use Oja’s rule on mean subtracted data

x n + 1 = x n n + x
n + 1

= x n + 1
n + 1

x − x n( )

x n + 1 = x n + α x − x n( )
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Autoencoder as motivation for Oja’s Rule

Note that Oja’s rule looks like a supervised learning rule
the update looks like a reverse delta-rule: it depends on the difference 
between the actual input and the back-propagated output

∆ w = w n+1 − w n = α y x − yw( )

x

w

w
y

x

Convert unsupervised learning into a supervised learning problem by trying 
to reconstruct the inputs from few features!
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Learning in the Autoencoder
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PCA with More Than One Feature

Oja’s Rule in Multiple Dimensions

Sanger’s Rule: A clever trick added to Oja’s rule!

( )
ˆ T

TTα

=

=

∆ = −

y W x
x W y

W y x W y

y = Wx
ˆ x = W T y

∆ W[ ]r − th − row = α yr x − W[ ]i − th − row( )T

i= 1

r

∑ y i
⎛ 
⎝ 

⎞ 
⎠ 

T

= α yr x − W[ ]1: r − th − row( )T y[ ]1: r − th − row( )T

Matlab Notation:
W (r , : ) = α * y (r ) * (x − W (1: r , : )' *y (1: r ))

This rule makes the rows of W become the eigenvectors of the data, ordered in 
descending sequence according to the magnitude of the eigenvalues.
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Discussion about PCA

If data is noisy, we may represent the noise instead of the data
The way out: Factor Analysis (handles noise in input dimension also)

PCA has no data generating model
PCA has no probabilistic interpretation (not quite true !!)
PCA ignores possible influence of subsequent (e.g., supervised) learning 
steps
PCA is a linear method

Way out: Nonlinear PCA

PCA can converge very slowly
Way out: EM versions of PCA

But PCA is a very reliable method for dimensionality reduction if it is 
appropriate!
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PCA preprocessing for Supervised Learning

In Batch Learning Notation for a Linear Network:
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Subsequent Linear Regression for Network Weights
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NOTE: Inversion of the above matrix is very cheap since it is diagonal! 
No numerical problems!

Problems of this pre-processing:
Important regression data might have been clipped!
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Principal Component Regression (PCR)

Build the matrix X and vector y

Compute the linear model
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PCA in Joint Data Space

A straightforward extension to take supervised learning step 
into account:

perform PCA in joint data space
extract linear weight parameters from PCA results

x

y
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PCA in Joint Data Space: Formalization
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Note: this new kind of linear network can actually tolerate noise in the input data! 
But only the same noise level in all (joint) dimensions!
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