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Lecture VII– Regression
(Nonlinear/Nonparametric Methods)

Contents:
• Local Weighted and Lazy learning techniques
• Nonparametric methods



Lecture VII: MLSC  - Dr. Sethu Vijayakumar 2

Nonparametric Methods

Working Definition
The name “nonparametric” is to indicate that the data to be modeled stem from 
very large families of distributions which cannot be indexed by a finite 
dimensional parameter vector in a natural way.

Remarks 
this does not mean that nonparametric methods have no parameters!
nonparametric methods avoid making assumptions about the parametric form of 
the underlying distributions (except some smoothness properties).
nonparametric methods are often memory-based (but not necessarily)
sometimes called “lazy learning”

Can be applied to 
density estimation
classification 
regression
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Locally Weighted Regression (LWR)

Fit locally lower order polynomials, e.g., first order polynomials

Approximate non-linear functions with a mixture of  k piecewise linear models
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Minimize Weighted Squared Error

Solution: Weighted Least Squares

Weight can be calculated from any weighting kernel, e.g., a Gaussian:

LWR: Formalization

J = wn t n − y n( )T

n= 1
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LWR: Examples (cont’d)
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The fits exhibit the bias-variance tradeoff effect with respect to parameter D.
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How to Optimize the Distance Metric?

Global Optimization
find the most suitable D for the entire data set

Local Optimization
find the most suitable D as a function of the kernel location c

Two possible options :
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Global Distance Metric Optimization

Leave-one-out Cross Validation
compute the prediction of every data point in the training set by:

centering the kernel at every data point
but excluding the data point at the center from the training set

find distance metric that minimizes the cross validation error
depending on how many parameters are allowed in the distance metric, this is a 
multidimensional optimization problem

NOTE: Leave-one-out Cross Validation is very cheap in nonparametric methods (in 
comparison to most parametric methods) since there is no iterative training of 
the learning system

J c = t n − y − n
n( )T

n =1

N

∑ t n − y − n
n( )
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Why Cross Validation ?
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Without Cross Validation, the kernel 
could just shrink to zero and focus on 
one data point only.

*** Avoids degenerate Solutions for D
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Global Optimization of Distance Metric: Example
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Locally Weighted Cost functionResultant fit from Global Optimization
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Local Distance Metric Optimization

Why not optimize the distance metric as a function of the location of the 
kernel center?

Local Cross Validation Criterion

Something Exceptionally Cool: The local leave-one-out cross validation 
error can be computed analytically—WITHOUT an n-fold recalculation 
of the prediction for linear local models  !

Jc = w n t n − y − n
n( )T

n =1

N

∑ t n − y − n
n( )

where β = X T WX( )−1
X T WY = PXT WY
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A Nonparametric Regression Network

Ideas:
Create new (Gaussian) kernels as 
needed (i.e., when no other kernel 
in the net is activated sufficiently 
(=> a constructive network)
update the linear model in each 
kernel by weighted recursive least 
squares
adjust the distance metric by 
gradient descent in local cross 
validation criteria
The weighted output of all kernels 
is the prediction

Receptive Field Weighted Regression (RFWR)
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Nonparametric Regression Network (cont’d)

 

y = βx
Tx +β0 = βT ˜ x where ˜ x = xT 1[ ]T 
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Nonparametric Regression Network (cont’d)

Update of the parameters:
Slope of local model :

Distance Metric Adaptation :
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Another very cool thing: For linear systems, leave-one-out cross validation can be 
approximated INCREMENTALLY!
Thus, no data has to be kept in memory!
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Example of learning
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A 2D Example
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Actual Data Generating function Sampled Data with noise

Why is this a tough function to learn ??
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A 2D Example (cont’d)
Results after one Epoch of Training Results after 50 Epochs of Training
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Nonparametric Regression Network (Summary)

The LWR scheme we developed (RFWR)--
can incrementally deal with the bias-variance dilemma
grows with the data (constructive)
learns very fast
is similar to a mixture of experts, but does not need a pre-
specified number of experts (no competitive learning)
is similar to committee networks (by averaging the outputs over 
many independently trained networks)

… but still has problems with the curse of dimensionality, as all 
spatially localized networks
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Handling curse of Dimensionality

We developed a method to make Local Learning methods like RFWR scale 

…the resultant system is called Locally Weighted Projection Regression (LWPR) 

LWPR 
module

We will learn more 
about this and other 

dimensionality 
reduction techniques 

in the next class.


